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Abstract  
Like the human brain, an artificial neural network is a complex nonlinear parallel processor; 

it is often called a neurocomputer. Accordingly, mathematical models of a neural network are 

usually continuous and stochastic, naturally associated with fuzzy logic.  Classical systems of 

artificial intelligence are always naturally associated with classical logic and discrete 

mathematics. Thus, the representations and models of knowledge, undeniable at least since 

Aristotle, do not correspond to the cognitive models that are obtained as a result of studying 

the human brain. In view of Niels Bohr, quantization is a phenomenon of a discrete, 

sequential process, that inherent in continuous and stochastic systems. However, the 

traditional mathematical model of quantum mechanics did not imply generalization to 

dissipative systems. The corresponding generalization, called the Dynamic quantum model 

(DQM), was proposed by author. It is defined for any dynamic system, given by ordinary 

differential equation or by diffeomorphism, or for dynamic systems that using logical 

operations. The neural network is exactly the DQM in the space of input signals. In this paper 

DQM is defined and constructed universally for both Hamiltonian systems and systems with 

the fuzzy logic truth function on phase space. The paper goal is to demonstrate quantization 

on DQM, i.e. actually on neural networks, and to extend the classical Bohr-Sommerfeld 

condition to the general case, in particular, to systems with a fuzzy truth function.  
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1. Introduction 

In recent years, artificial intelligence technologies are increasingly based on artificial neural 

networks, often they are already simply identified with   neural networks [1]. Like the human brain, 

an artificial neural network is a complex nonlinear parallel processor; it is often called a 

neurocomputer [2]. 

A neural network has a special form of robustness. If the calculations are distributed among many 

neurons, then it does not matter that the state of individual neurons in the network is different from 

what is expected. Noisy or incomplete input signal can still be recognized; the damaged network can 

perform its functions at a satisfactory level; learning doesn't have to be perfect [3]. Accordingly, 

mathematical models of a neural network are usually continuous and stochastic, naturally associated 

with fuzzy logic [4]. 

Meanwhile, this method of information processing is fundamentally different from the methods 

used by a conventional digital computer (von Neumann's machine). And the cognitive models of the 

neural network are fundamentally different from the traditional models of artificial intelligence, 

corresponding to the von Neumann machine [1]. Classical systems of artificial intelligence (based on 

proof theory, theory of algorithms, etc.) always involve the use of a symbolic language to represent 

knowledge, and cognition in them is carried out as a sequential processing of symbolic information. 

Therefore, their mathematical models are naturally and inevitably associated with classical logic and 

discrete mathematics [5]. 
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Thus, the representations and models of knowledge, undeniable at least since Aristotle, apparently 

clearly do not correspond to the cognitive models that are obtained as a result of studying the human 

brain [6]. 

This paradox was already realized by Niels Bohr. In his view, quantization is a phenomenon of a 

discrete and sequential process, that inherent in continuous, stochastic and parallel systems. It refers 

to systems not only physical, but also cognitive [7]. This idea remained a philosophical idea, not 

embodied in the concrete model. This happened mainly because the ultimately obtained mathematical 

foundation of quantum mechanics was based on the ideas not of Bohr, but of Schrödinger and was 

associated with the peculiarities of the physical microcosm [8]. 

As a result, the traditional mathematical model of quantum mechanics did not imply generalization 

to dissipative and stochastic systems [9]. 

The corresponding generalization, called the Dynamic quantum model (DQM), was proposed in 

[10]. From the assumption that quantum effects are caused by unrecoverable “white noise”, this 

mathematical model of quantum mechanics already follows and is essentially unambiguous. 

Dynamics in it is described by Markov cascades (time is discrete). This model is simply connected 

with the traditional one: there is a simple correspondence between Markov cascades and 

quasisolutions of the corresponding Schrödinger equation. Thus, in a sense, DQM is a bridge between 

the traditional calculus of quantum mechanics and the intuitive vision of physicists. On the other 

hand, in this model spectral problems are reduced to the usual perturbation theory of smooth 

dynamical systems. Thus, the construction of such models can be considered as an asymptotic method 

for solving spectral problems [11].   

But the definition of  DQM is not formally related to Hamiltonian systems. It is defined for any 

dynamic system, given by ordinary differential equation or by diffeomorphism on any smooth 

Riemannian manifold, or for dynamic systems that using logical operations: algorithms, theorems, 

software applications. As a Markov cascade, the DQM is approximated by a Markov chain and on a 

compact set by a finite Markov chain arbitrarily exactly. This allows you to clearly understand the 

DQM dynamics and build effective algorithms for the study of concrete systems. On the other hand, 

when fluctuations tend to zero, i.e. in the semiclassical limit, the dynamics of the DQM goes into the 

initial smooth dynamics. The equivalence of structural stability and hyperbolicity for smooth discrete 

dynamical systems is established along this path [12]. 

If we build an approximate model of a given theorem or software application using neural network 

training, then we will get exactly the DQM of this object. Indeed, when fixing synaptic weights, we 

get some realization of a Markov cascade, i.e. some realization of this DQM by its definition. (For the 

rigorous definition of DQM realization and more detailed descriptions see [12].) Thus, a neural 

network is an example of DQM; moreover, this is its general example.  

Thus in [12] the general definition of DQM are given and its use to prove the equivalence of 

structural stability and hyperbolicity. In [11] the relationship between DQM and the traditional 

calculus of quantum mechanics was demonstrated. In this paper DQM is defined and constructed 

universally for both Hamiltonian systems and systems with the fuzzy logic truth function on phase 

space. Here we generalize the quantization from the traditional quantum mechanics onto this general 

case.  

The paper goal is 1) to demonstrate quantization on DQM (i.e. actually on neural networks) 2) to 

extend the classical Bohr-Sommerfeld condition to the general case, in particular, to systems with a 

fuzzy truth function.  

The paper is organized as follows: in part 2 we present the basic concepts of the DQM and along 

the way some necessary lemmas (the detailed description of DQM is given in [11], [12]); in part 3 we 

prove Bohr-Sommerfeld condition for DQM; part 4 concludes. 

We had to omit proofs of some lemmas in order to fit the paper format. 

2. The Dynamic Quantum Model: Basic Definitions  
2.1. DQM Definition  
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. And then randomly shifts on a distance not exceeding the length of the 

trajectory from the original to the new point. The following rigorous definition summarizes this 

description. The definition of a dynamic quantum model is given for an arbitrary dynamic system (1) 

on an arbitrary compact Riemannian manifold M .  

Definition 1. By a dynamic quantum model (DQM) for dynamical system (1) we mean the 

Markov cascade with the transition function ),( AxP , which associates with each point x  of the 

trajectory of (1) and an open subset A  of the configuration space probability of getting from x  to A  

in one iteration: 
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where t  is the shift time from x  to Gx  along the path of the ρ-length h2  or h2  + 
2

h
  in 

the neighborhood of the caustic, 
2  = h2 . Given the initial distribution, we obtain a Markov 

process P  with this initial distribution and the transition function ),( AyP : if 
t  is the distribution at 

time t , t  is the lag between the two nearest measurements, then the DQM sets new distribution 

tttP   )(  at time tt  . 

2.2. DQM eigenvalues and Markov deviations  

Our goal is to determine pure states and eigenvalues of DQM. And now, along with the 

discreteness of the measurement process, its limited time will be essential. Of course, the 

measurement process cannot continue indefinitely, but here its duration is dictated by the very 

definition of DQM. Namely, the duration of the measurement, in principle, cannot exceed on order  

h

1  since further the measurement errors with dispersion t2  (where the diffusion coefficient 
2  is 

small of order h ) are no longer small and the notion of trajectory loses its meaning. (And you can 

only talk about the average values for the ensemble, as in statistical physics). Therefore, we limit the 

time to a certain limiting value T of order  
h

1   (
h

T
1

~ ): 
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T  , where B > 0 is a constant. (In 

general, we say that the quantity u = u (h) in a DQM is of order kh     ( khu ~  or )( khOu  ),  if  



khu  . And  u = u (h)  is  exactly of the order kh  ( khu ~ ),  if  
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Definition 2. The Markov deviation  Z(z) is a smooth vector field on phase space such that  1) 
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( 0B ) is a constant of dynamical system (1) (i.e., the length  Z(z) does not exceed in order 
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for all points z of the phase space);   

2)  for any initial point  z0 = z(t0) on the phase curve z(t) of the dynamical system (1) and the time 

instant  t  in optical time  ( t  <  T ~ 
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1 ) we have 
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where e(t) is the unit normal vector of the closed phase curve at the point z(t), 0B  is the constant 

of dynamical system (1).  

Property (3) of the Markov deviation is due to the fact that, by construction, the vector Z(z(t)) has a 

random orientation, therefore, the pluses and minuses of the accumulations of its projections on the 

unit vectors are compensated. Therefore, the integral of the accumulation of projections along the 

phase curve is experimentally indistinguishable from zero.  

Corollary of condition 2). If the DQM trajectory z(t) is closed and z(0) = z( t

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  If instead of a given time limit 
h

T
1

~  we take 
h

T
1

~1
 ( TT 1

), then we obtain another Markov 

deviation; similarly, when replacing the zero point in time. So the Markov deviation is a smooth 

vector field that depends on the parameters; further, it can be assumed to be a general view field. 

2.3. DQM pure states and eigenvalues. Quantization of spectrum in DQM. 

The physical meaning of the eigenvalues is that these are all values of energy that can be the result 

of reliable, i.e. the most accurate measurement (ideally of the order of h
2
). But as a result of the most 

accurate experiments, as we have seen, in reality the dynamics is studied not of the diffeomorphism 

G , but of its perturbation ZGG  . Let  J = J (z) is a given smooth function on phase space. We 

can interpret it as the Hamiltonian (energy in the phase space) or as a function of truth (0  J (z) 1), 

equal to 1 on the true trajectory and 0 outside some neighborhood of it. Given the irremovable errors 

of the Markov deviation, the discreteness of the measurement process and its limited time, we arrive 

at the maximum number of the most accurate measurements  


tN

i
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t
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N 0
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phase space, Z  is the general view Markov deviation, ZGG   is a diffeomorphism, 
tN  is the 

maximum number of significantly different measurements over time Tt  .  



Definition 3. Let ZGG  , where Z  is a general view Markov deviation; 
tN   is the number of 

all iterations of the diffeomorphism in time t ;   is a real number. Let 
hDD   be the set of points z 

of the phase space such that for all sufficiently large  
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where B is a constant. Then, if for any Z of a general view and sufficiently small h, the set Dαh 

contains a ball with a diameter of exactly the order of h, then α will be called the eigenvalue of the 

DQM for dynamical system (1), and Dαh will be called the carrier of the pure state corresponding to 

this eigenvalue. 

Thus, all points of a DQM spectrum are formally determined only with an accuracy of the order of 

h
2
, but this corresponds precisely to their meaning. By definition, the domain Dαh is an open G - 

invariant subset of the phase space.  

So, to define DQM means to set: 1) the Markov process in accordance with Definition 1; 2) the 

Markov deviation  Z of general view or, what is the same, diffeomorphism ZGG   in accordance 

with Definition 2.  

2.4. Quantizing the spectrum in DQM 

Consider the two–dimensional dynamical system (1), the compact phase space Λ of which is filled 

with closed phase curves. After the smooth change of variables, in canonical coordinates z(p; x), this 

is the dynamics of uniform rotation along concentric circles. If we interpret J  as a function of truth, 

then its values on each circle, concentric to the true path (true circle), are constants (i.e., they do not 

depend on a point on this circle): )(),( pJxpJ  . At the semantic level, with such interpretation, we 

are talking about transitions to equivalent propositions.  

Theorem. The DQM eigenvalues of the given dynamical system, with accuracy of the order h
2
, 

are equal to the values of J (z) on the phase circles in Λ, the ρ - length of which satisfies the Bohr - 

Sommerfeld condition   

)
2

1
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and only they. 

Let  z0  Λ, then by DQM definition z1 =G z0 = Gz0 + Z(Gz0), x(Gz0) = x(z0) + p(z0)Δt0, where Δt0 
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kG z0 = G zk-1 = G(zk-1) + Z(Gzk-1), whence p(zk) = p(zk-1) + p(Z(Gz 

k-1)),   x(Gz k-1) = x(zk-1) + p(zk-1)Δtk-1,  x(zk) = x(Gzk-1) + x(Z(Gzk-1)),  Δtk-1 is time of transition from zk-1 

to zk   







1

0

00 ))(()()(
k

i

i

k GzZpzpzGp , 

                    









1

0

1

0

0 )(()()(
k

i

i

k

i

ii

k GzZxtzpzGx . (8) 

From property 2) of the Markov deviation, i.e. (3) it follows that for the perturbed DS with these 

conditions, the averaging theorem in single-frequency systems [13] is valid. From this theorem for the 

considered DQM follows the usual derivation of the perturbation theory: trajectories and therefore 

iterations of the perturbed diffeomorphism  G , starting on the circle of the dynamical system (DS), at 

any time t < T ~ 
h

1  remain in its neighborhood of order h: for some constant b 
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Lemma 1. Let z0  Λ, K be the phase circle from Λ, z0 K, t
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where  d0 > 0 is a constant.   

Lemma 2. Under the conditions of Lemma 1, for some DQM constant B > 0 
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Lemma 4. Let z1, z2  Λ,  x(z2) – x(z1) ~ h,  p(z2) – p(z1) ~ h
2
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h
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2
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2
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3
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2
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Proof of the theorem. Let the ρ - length 2πI0 be a multiple of 2πh on the phase circle K0  Λ, 

taking into account two turning points: 2πI – 2 ∙ 
2
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Then Dn is the support of the pure state corresponding to the eigenvalue αn by Definition 3. 

      3) There are no other eigenvalues besides αn (n = 1, 2,…) in this DQM. 
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This constitutes the basis of induction. Consider the general case. 
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      in view of m ~ = 

h

1

 
.  Hence in view of (14)  
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On x, from (14) we obtain for all i = 1, ..., m  
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Let V be an arc of a circle K0 centered at a point z0 of length exactly on the order of h, the radius of 

which exceeds all x(zi) – x(z0)  (i = 1, …, m) in accordance with (17). Let  1 = {z(x)   x  [x(z0); 

x(z1)], p(z(x))  [p(z0); p(z1)] } is a continuous curve from z0 to z1 in the region between K1 and K0 and 

thus in Dn. Thus 2 = 
nG 1 = {z(x)  x  [x(z1); x(z2)], p(z(x))  [p(z1); p(z2)] },  …,   m = 

mnG 1 = 



{z(x)  x  [x(zm-1); x(zm)], p(z(x))  [p(zm-1); p(zm)] } are continuous curves from z1 to z2 and from zm-1 

to zm accordingly. And then  
m

i

i

1

   is continuous curve in Dn from z0 to zm which is projected 

along x into an arc V. Consider the flow of the perturbed trajectories starting at points from , 

projected along x onto the arc V, i.e. trajectories in a time of the order of h. During this time, the 

trajectory with the initial dynamics diverges from the perturbed trajectory with the same initial point 

by a distance of the order of h
2
. Hence, in view of (16), on the trajectory of this flow with origin at zm, 

the minimum distance d  to K0 is exactly of the order of h:  d ~ = h. So all points z(x; p) in the range x 

 V,  p  [p(z 0);  p(z 0) + d ] are points on the trajectories of the flow and therefore from Dn. This is 

what is required: Dn contains a ball of diameter exactly of the order of h. 

In view of (9), points from this sphere with a diameter of the order of h will remain at a distance of 

the order of h during the time of revolution of the phase circle K0. And then, as follows from Lemma 

4, during this time the differences of their p - coordinates change only by a value of the order of h
2
. 

Hence for the region D
+

n = 
n

i

n

i DG
0

)(


 for all x  [0; 2] the length of its intersection with a straight 

line {z  x(z) = x } has exactly the order of h. Reversing time, i.e. in the previous reasoning, 

everywhere replacing G to 
1G , we obtain a region D

-
n,  symmetric to D

+
n with respect to K0 with an 

accuracy of the order of h
2
. Therefore, the domain nD = D

+
n  D

-
n forms a neighborhood of the circle 

K0 exactly of the order h: 

.~0 hKzDz n   (18) 

2) In accordance with Definition 3, it is required to show that for all z0  Dn and sufficiently large t 

< T ~ 
h

1
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 , where Nt is the number of all iterations in time t.  

For considering DS J (
iG z0) – J (z0) = a(Δpi) + O(Δpi)

2
, where  Δpi  =  p(

iG z0) – p(z0), a = 
p

J





(p(z0)). As  p(
iG z0) – p(z0) ~ h  for all  i = 1, 2, …, Nt  in view of (12), then J (

iG z0) – J (z0) = a(Δpi) 

+ O(h
2
). Therefore   
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First, let z0 be contained in the region between the curves K1 and K0. Then for z  K0  we have J 

(z0) – αn = J (z0) – J (z) = a(p(z0) – p(z)) + O(h
2
) ~ h

2
  as distance between K0  and  K1 = 

nG K0 is of 

order h
2
 by Lemma 1.  

We put 
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at  1 ≤ i ≤ m,  0 ≤ j < n. Let  δi =




1

0

n

j

ij ~ h
2
  by Lemma 3, the integer part of 

n

N t  is equal to  [
n

N t ] 

= M  ~ = 
h

1
  with  t ~ = 

h

1
.  In view of (19),  
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(20) 



But  

tN

a
 M β ~ h

2
 in view of  β =






1

0

n

k

kp ~ h  by (11) Lemma 3 and  

tN

M ≤ 
n

1  ~ h. Further  
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a





M

i
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  ≤  

tN

aM 


M

i

i

1

  ~ h
2
  as  

tN

M  ≤ 
n

1  ~ h, all  δi ≤ d2h
2
 by (12) Lemma 3 and M = [

n

N t ] ~
h

1
  at  

t ~ 
h

1 .  Finally 

tN

a
 




tN

Mnk

kp ~ h
2
, since everyone Δpk ~ h,  Nt – Mn ≤ n ~ 

h

1  ,  and  

tN

a
~ h

2
  at  t ~ 

h

1

.   As a result  


tN

k

k

t

zGJ
N 0

0)(
1

– J(z0) ~ h
2
, and since  J(z0) – αn ~ h

2
, then 



tN

k

k

t

zGJ
N 0

0)(
1

– αn ~ h
2
, 

which was required.  

Consider now the general case z0  Dn. By construction, there is a point 
0z

 
between the curves K1 

and K0 such that 0zG jn
= z0  for some  j  (1 ≤ j ≤m). Choose a time τ such that Nτ = jn.  Then in (20)  

M = [
n

N
] = j,  Nτ – Mn = 0  and    
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since 
N

1
a  M β ~ h
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 and 
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2
 from 

(36), which is true only if t ~ = 
h

1 ,  is not needed here. On the other hand, for sufficiently large t ~ = 

h

1
 we obtain 
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as in (20), in view of t + τ ~ =
h

1
. Hence  





tN

i

i zGH
0

0 )( = Nt+ταn + Nt+τϕ2,  and from (21)   




N

i

i zGH
0

0 )(  = Nταn + Nτϕ1. Hence  





tN

i

t

t

n

i

t

ФNФN
N

zGH
N 0

210 ).(
1

)(
1

  

  But 

tN

1
(Nτϕ1 + Nt+τϕ2) ~ h

2 
 as  ϕ1, ϕ2 ~ h

2
  and  0 < 

tN

N  < 1,  1 < 
t

t

N

N 
 < 2  for sufficiently 

large t, as required.  

These results extend directly to the domain nD = D
+

n  D
-
n  so that, in view of (18), either 

tN

1




tN

i

i zGH
0

0 )( – αn ~ h
2
  or  z0 – K0 ~  h  for all  z0  Λ. 

3) Let  z0  Λ, K is a phase circle in Λ, z0  K, z1 = Gz0  K. In general, for the ρ - length 2πI of 

the circle K = KI  , the number R = 2πI – 2 ∙ 
2

h
 is not a multiple of 2πh: integer part N = [R / 2πh] < 

R / 2πh,  fractional part r = R / 2πh – N > 0.  Then  G
N
(z0 + r) = z0, G

N
z1 = z1 – r = G

N+1
z0,  G

N+1
(z0 + r) 

= z1. Hence 
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Let us define the Poincaré succession function on an arbitrary arc [z0; z1]  of ρ - length 2πh of the 

circle KI. We put W(z) =
NG z – G

N
z  for  z  [z0; z1]. If  r = 0  for KI , then 

NG z = z + W(z)  (z  [z0; 

z1]):  this is the case discussed above. In the general case, for each traversal of the circle, the deviation 

W(z) is added to another point of the segment [z0; z1]  and the dynamics around KI turns out to be 

completely different. Namely, we glue the points z0  and  z1,  thereby transforming the arc [z0; z1] into 

a circle CI of ρ - length 2πh i.e. of ρ – radius h. Then, according to (38), the operator Vz = G
N
z is the 

rotation of the circle CI by ρ - length r, that is, by an angle φ = 2π
h

r

2
= 

h

r
 counterclockwise, if 

clockwise rotation on the phase circle and vice versa. And W (z) is added at the point Vz, the 

succession function for the disturbed dynamics Fz = Vz + W(z):  formally in accordance with (22)  Fz 

= NG z   at  z  [z0 + r; z1]  and   Fz  = 1NG z  at  z  [z0; z0 + r] on the circle  CI .   

For an arbitrary arc [z0(t); z1(t)]  on KI of ρ – length 2πh, where zi(t) is the image of zi (i = 1, 2) 

under the action of dynamics in time t, we obtain, as in (22)     

G
N
[z0(t) + r; z1(t)] = [z0(t); z1(t) – r];   G

N+1
[z0(t); z0(t) + r] = [z1(t) – r; z1(t)]. 

Hence, after gluing the points z0(t) and z1(t) we also obtain on the circle CI(t) of  the ρ- radius h, the 

rotation Vz = G
N
z through the angle φ = 

h

r . Then the succession function on CI(t) for DQM dynamics 

is Ft z =
NG z at z  [z0(t)  + r; z1(t)] and is Fz = 

1NG z  at  z  [z0(t); z0(t)  + r],  Ft z = Vz + W(z,t).      

This dynamics is transferred from KI to CI: point z  CI at time t is transformed into ),( tzF = Vz 

+ W(z, t). By construction, the function W(z, t) is 2πI periodic in time t and W(z, t)  ~ h
2
  for all  z  

CI  and  t  according to Lemmas 3 and 4. When decomposing into a segment of a Taylor series for the 

mapping ),( tzF on a circle CI of ρ- radius h it mean, that Vz is the linear, and W(z, t) is the nonlinear 

part of ),( tzF . Therefore linearization of the dynamics on KI induces uniform rotation in optical 

time on CI in accordance with the Floquet theorem [14]. In a complexified form, such dynamics is 

given by the equation 

, i  (23) 

where ζ is the coordinate on CI, ζ  = h, ω is the rotation frequency. Then, taking into account the 

nonlinear part of ),( tzF  the dynamics on KI induces on CI the dynamics given by the equation 

),,,( twi    (24) 

where w(ζ,  , t) is the nonlinear part of the equation generating the deviation W(z, t) that as 

smooth as dynamics on KI and is 2πI periodic in time t. Let's change the time t  t / I:  then W(z, t) 

and w(ζ,  , t) are 2π periodic in time t,  and 2πω  =  φ  = 
h

r
,   whence ω = 

h

r

2
,  i.e., ω is the 

fraction of the ρ - length r of rotation on the circle CI under the action of ),( tzF  to the ρ - the length 

of the circle CI. So, (24) is a smooth equation, which is 2π - periodic in t on a two-dimensional phase 

space. Then [15] for ω  0 (40) is reduced by a smooth change of variables to the following canonical 

form: 

),( 312
 obai q    (25) 

where q is the denominator of the irreducible fraction 
q

p
  and a is a parameter. For irrational 

ω, here b = 0. For q = 2, b = 0 since the linear part of (25) coincides with (24). In this form, the 

equation does not depend on t to О(ζ
3
)  at least, i.e. with an accuracy of  ~ h

3
. 

      In 1) the phase circles from Λ, that are not contained in nD = D
+

n  D
-
n , are located at a 

distance of the order of  h from this circle according to (18). According to 2) for any z0  nD

 

 

tN

1






tN

i

i zGH
0

0 )( – αn ~ h
2
  for sufficiently large Nt, i.e. according to definition 3 nD is carrier of DQM 

eigenvalue αn. And according to (25), the dynamics on the DQM trajectory outside of 
n

nDD   and 

therefore for 0 , there is motion along it with a constant velocity with an accuracy of the order of 
3h  during the turnover time and of the order of h

2 
during the time 

h
T

1
~  (including q = 3 according to 

[16]). That is, these trajectories remain motionless during time 
h

T
1

~  with an accuracy of the order of 

2h . So the trajectories outside D with a distance between them in order of magnitude greater than h
2 

will remain at a distance greater in order of h
2 

during this time. For phase circles outside D , (24) is 

reduced to the form (25) by a smooth change of variables different from the identity on only of order 
22 ~)( hO  [15]. So, for two trajectories outside D  with a distance of an order greater than h

2 

between them, the average values of the Hamiltonian on them differ by the same order 
2h over time T 

from Definition 3. So, outside the domains nD , carriers of the eigenvalues αn, there are no subsets in 

which (7) is satisfied and which contain a ball of diameter of order h   there are no DQM 

eigenvalues by Definition 3, QED. 

3. Conclusion 

Like the human brain, an artificial neural network is a complex nonlinear parallel processor; it is 

often called a neurocomputer. Accordingly, mathematical models of a neural network are usually 

continuous and stochastic, naturally associated with fuzzy logic. 

Classical systems of artificial intelligence always involve the use of a symbolic language. Their 

mathematical models are naturally associated with classical logic and discrete mathematics. Thus, the 

representations and models of knowledge, undeniable at least since Aristotle, do not correspond to the 

cognitive models that are obtained as a result of studying the human brain.  

In view of Niels Bohr, quantization is a phenomenon of a discrete and sequential process, that 

inherent in continuous, stochastic and parallel systems. However, this idea has not been embodied in a 

concrete model. The traditional mathematical model of quantum mechanics did not imply 

generalization to dissipative and stochastic systems. 

The corresponding generalization, called the Dynamic quantum model (DQM), was proposed by 

author. It is defined for any dynamic system, given by ordinary differential equation or by 

diffeomorphism on any smooth Riemannian manifold, or for dynamic systems that using logical 

operations: algorithms, theorems, software applications. The neural network is exactly the DQM in 

the space of input signals.  

In this paper DQM is defined and constructed universally for both Hamiltonian systems and 

systems with the fuzzy logic truth function on phase space. It occurs, that in the second case the point 

of the DQM spectrum is interpreted exactly as the average value of truth for approximate logical 

conclusions.  

The paper goal is to demonstrate quantization on DQM, i.e. actually on neural networks, and to 

extend the classical Bohr-Sommerfeld condition to the general case, in particular, to systems with a 

fuzzy truth function. 
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