
Checkable FPGA-Based Components of Safety-Related Systems

Oleksandr Drozda, Kostiantyn Zashcholkina, Anatoliy Sachenkob, Oleksandr Martynyuka,
Olena Ivanovaa and Julia Drozda

a Odessа Polytechnic State University, 1, Ave. Shevchenko, Odesa, 65044, Ukraine
b West Ukrainian National University, 11, Lvivska Str., Ternopil, 46009, Ukraine

Abstract
The paper is devoted to the problem of checkability of circuits in FPGA components of
safety-related systems, which are designed to operate in two modes: normal and emergency
for providing their own functional safety and the safety of control facilities in order to
prevent accidents and reduce losses in case of their occurrence. Functional safety is ensured
through the use of fault-tolerant solutions that are sensitive to sources of multiple failures,
including hidden faults. They can accumulate during a prolonged normal mode with limited
checkability of the circuits and simultaneously manifest themselves with the beginning of the
emergency mode. A fault-tolerant structure becomes fail-safe if it is checkable. The problem
of hidden faults manifests itself in the memory of the LUT units of FPGA components with
LUT-oriented architecture. The program code written in the memory of the LUT units is
checked with a checksum, but it can be corrupted when reading its bits on the outputs of the
LUT units. Bits observed only in emergency mode reduce the checkability of FPGA
components and are potentially hazardous. Checkability can be increased by the operation of
circuits on successively replaced versions of the program code that can be obtained for the
same hardware implementation. Versions move potentially hazardous bits to checkable
positions observed in normal mode. However, the set of these versions are significantly
limited by connecting the inputs of the LUT units to the inputs of the FPGA component. The
proposed method overcomes this limitation by introducing an additional scheme.
Experimental studies of library FPGA designs show a low level of their checkability and
efficiency of the proposed method, which provides totally checkable circuits.

Keywords 1
Safety-related system, normal and emergency modes, hidden faults, FPGA component, LUT-
oriented architecture, memory bits of LUT unit, program code version, checkability

1. Introduction

FPGA design is becoming the most advanced direction in the development of digital components
for computer systems. The advantages of FPGA design, first of all, are based on the combination of
the technological hardware basis of circuit solutions and the possibility of their programming [1, 2].

Recognition of the advantages of FPGA design (Field Programmable Gate Array) is reflected in its
widespread use in the most responsible areas, including the domain of critical application of computer
systems for monitoring high-risk facilities [3].

Power plants and power grids, transport infrastructures, chemical and other high-risk industries are
directly related to safety problems, which manifests itself in two aspects. On the one hand, these
facilities provide energy, transport, food and other types of security important for the survival and

7th International Workshop on Theory of Reliability and Markov Modeling for Information Technologies (WS TheRMIT 2021 at the 17th
International Conference ICTERI2021), September 28, 2021, Kherson, Ukraine
EMAIL: drozd@ukr.net (O. Drozd); const-z@te.net.ua (K. Zashcholkin); as@wunu.edu.ua (A. Sachenko); anmartynyuk@ukr.net
(O. Martynyuk); en.ivanova.ua@gmail.com (O. Ivanova); yuliia.drozd@opu.ua (J. Drozd)
ORCID: 0000-0003-2191-6758 (O. Drozd); 0000-0003-0427-9005 (K. Zashcholkin); 0000-0002-0907-3682 (A. Sachenko); 0000-0003-
1461-2000 (O. Martynyuk); 0000-0002-4743-6931 (O. Ivanova); 0000-0001-5880-7526 (J. Drozd)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

development of mankind. For this reason, humanity is unable to refuse the further development of
these objects. On the other hand, this development is accompanied by the quantitative and qualitative
growth of high-risk objects, which become an integral part of our habitat and constantly increase their
power, demonstrating it in the event of accidents [4, 5].

In these conditions, it is necessary to control the risks, which are assessed by two factors: the
probability of an accident and the cost of its consequences [6, 7].

The development of high-risk facilities in the direction of increasing losses caused by accidents
focuses attention on the problem of containing risks by reducing the probability of an accident. The
solution to this problem, which is important for the survival of mankind, is provided by the
development of information technologies implementing in computers, which, taking into account such
specialization, acquire features that define them as safety-related systems. An important feature of
critical systems is their designing for operation in two modes: normal and emergency [8, 9].

According to international standards, these instrumentation and control systems are aimed at
ensuring the functional safety of the controlled object in combination with its own functional safety to
prevent accidents and reduce losses in case of their occurrence [10].

The provision of functional safety, which is carried out on the basis of the use of fault-tolerant
solutions, faces the problem of multiple failures, including hidden faults. Their accumulation during
normal operation can lead to multiple failures in emergency mode. Faults can accumulate in a digital
circuit due to its limited checkability as another manifestation of the features of modern safety-related
systems. In FPGA components with a LUT-oriented (Look-Up Table) architecture, the lack of
checkability manifests itself in the memory of the LUT units and does not allow fault-tolerant circuits
to become fail-safe.

These studies are aimed at designing checkable circuits that convert fault-tolerant FPGA
components into fail-safe ones. Section 2 examines related works that show the sources of multiple
failures and disclose the impact of critical system features on the checkability and fail-safety of digital
circuits. Section 3 describes the main provisions of the proposed method for designing checkable
circuits for fault-tolerant FPGA components of safety-related systems. Section 4 demonstrates the use
of the method on the example of iterative array multipliers implemented in FPGA projects. Section 5
is devoted to a discussion of the results obtained.

2. Related works

Ensuring functional safety is associated with the consideration of various factors of its violation,
among which failures occupy a special place. The problem of failures is solved by using fault-tolerant
structures, which in the design process acquire the ability to withstand a certain number of failures.
Most often, a fault tolerant solution is limited to one or two failures that can be mitigated. This
limitation is explained by considerations of cost savings and a significant decrease in the probability
of the simultaneous occurrence of independent failures with an increase in their number [11, 12].

It should be noted that the low probability of the simultaneous occurrence of many failures,
including independent ones, does not negate the likelihood of their simultaneous manifestation. For
this reason, the greatest danger to fault-tolerant circuits and the functional safety provided by them
comes from sources of multiple faults, for which the assumption of a low probability of multiple
failures is violated.

International standards related to functional safety focus on one such source, which combines
common cause failures [13].

This reason is the copying of erroneous decisions that can arise, for example, as a result of design
errors. The standards propose limiting such copying through the development of multi-version
technologies that reduce many common causes [14, 15].

It is important to note that versions are one of the features of the existing universe, since nothing in
this world is stamped the same. This feature is demonstrated by majority structures, which are fault-
tolerant with respect to the failure of one channel when they are built by stamping three channels.
Fault tolerance of the majority system is achieved only because each of these channels has a natural
version redundancy. They cannot be made the same. However, the available natural types of diversity
are not enough to withstand common cause failures, for example, in the case of using the same

software that contains a design error in the channels. Therefore, the natural types of diversity are
supplemented by the types created artificially in the process of development of multi-version
technologies [16].

Ensuring functional safety requires close attention to the sources of multiple failures based on a
deep analysis of already manifested sources and the search for new sources.

One of these sources is associated with deliberate malicious interference in computer systems
through the organization of cyber-attacks. This source has been deeply studied by methods and means
of information security, which, thus, manifests itself as an important component in ensuring the
functional safety of critical systems, in particular, in maintaining their integrity [17, 18].

It should be noted that common cause failures are primarily a problem for fault-tolerant systems
and are only indirectly related to functional safety. Multiple failures caused by cyber-attacks are also
related to more than just critical systems. Moreover, all of these failures are not independent in nature.

The next source of multiple failures is inherent only in safety-related systems, although it has not
yet been adequately reflected in the relevant international standards. This source is associated with the
problem of hidden faults that can be independent and accumulate in safety-related systems during
long normal mode. This mode can last for many years and decades. As a rule, detection of faults in a
digital circuit is carried out by logical checking methods by identifying an error in the calculated
result. In this case, the fault becomes hidden due to the lack of input data that can manifest it in the
form of an error in the calculated result. In normal mode, the variety of input data is often limited by
noise. The emergency mode increases the activity of the input data, which manifests itself in the
expansion of the range of their change. The manifestation of accumulated faults on new input data can
lead to numerous failures and disrupt the functional safety of the system in the most responsible
emergency mode [19, 20].

Hidden faults are not a problem for conventional computers which work in the same operating
mode. Indeed, the absence of input data showing a malfunction throughout the entire operating mode
completely excludes the hidden fault from the computational process. Thus, hidden faults occupy a
special place among multiple failures related to critical systems.

The presence of hidden faults in the circuit indicates its insufficient checkability. Typically, digital
circuits are characterized by logical checkability, i.e., suitability for logical checking.

The limitation of checkability can have various reasons. Testability, which is the simplest form of
checkability, can be limited by the structural redundancy of a digital circuit. The ability to write tests
for detection of the faults is completely determined by the circuit design. Therefore, testability is
structural checkability [21, 22].

In the operating mode, the checkability of a digital circuit is limited not only by the structure of the
digital circuit, but also by its input data, the variety of which may be insufficient for the manifestation
of some faults. Methods and means of on-line testing using logical checking [23, 24] can detect faults
in digital circuits only in the case of calculating an erroneous result, i.e., within the framework of
logical checkability.

Different conditions for the functioning of digital circuits in the normal and emergency modes of
the safety-related system are determined, first of all, by different input data, which also determine the
difference in the checkability of the circuit for these modes.

The increase in checkability in the emergency mode, which occurs due to the greater variety of
input data, leads to the problem of hidden faults, which have more opportunities for their
manifestation in the form of errors in the result.

Focusing the problem of hidden faults only on safety-related systems does not mean that they are
inextricably linked. At the same time, such a connection is certainly inherent in modern safety-related
systems. To free critical systems from this problem, it is necessary to pay attention to its causes,
which are of an evolutionary nature [25, 26].

The resource-based approach that analyzes the integration of the computer world into the natural
one identifies the problem of hidden faults as a challenge of growth. The evolutionary development of
models, methods and tools that make up the resources necessary to support integration processes can
be represented by three levels: replication, diversification and self-sufficiency as the goal of
development. Replication is characterized by the absence of rigid contact with the natural world in the
conditions of open resource niches: ecological, market, technological and others, which allow
churning out resources within these niches without restrictions. Integration is carried out at the

expense of productivity, the growth of which is stimulated up to the closure of resource niches as a
result of their filling. From this point on, stamped clones lose the prospect of integration and can only
survive by exhibiting characteristics that allow them to rise to the level of diversification. At this
level, integration occurs at the expense of trustworthiness, which manifests itself in the adequacy of
the natural world [27, 28].

In the computer world, all levels of resource development are represented, but replication
dominates. Open resource niches of performance and memory capacity of modern computers allow
assembling software products from stamped redundant program modules [29, 30].

For such solutions, resource niches are closed in energy consumption with the advent of mobile
computer systems that encourage the development of green technologies, tending to the level of
diversification [31–33].

In hardware, replication is manifested in the growth of matrix structures from homogeneous
elements. Matrix structures show a number of significant drawbacks due to their low level of
development.

For example, an iterative array multiplier that performs an operation on n-bit binary codes in one
clock cycle consists of n2 operational elements, each of which is used for a small part of the clock
cycle, since its duration is determined by the serial connection of 2n – 2 elements. For n = 64, the
useful use of each of the more than 4 thousand operational elements is only 0.8% [34, 35].

The rest of the time is spent on parasitic switching, which occurs due to the competition of signals
propagating along paths of different paths. Parasitic transitions are quantitatively many times greater
than functional switching and therefore mainly determine the dynamic component of power
consumption, just as the static component is due to the large size of the matrices [36, 37].

The most significant drawback of matrix structures, which manifests itself in relation to safety-
related systems, is their low checkability, due to the processing of data in parallel codes. The iterative
array multiplier input word, composed of two n-bit binary codes, contains 2n bits and a variety of 22n
values. The digital multiplier circuitry can accept input data that changes at the noise level and use
only a few such values throughout normal mode.

The processing of data in sequential codes constitutes an input word of two bits, taking 4 different
values, on which the complete checkability of the digital circuit is ensured. This way does not lead to
a loss in the ratio of performance to complexity when performing bitwise pipelining, where the matrix
structures of modern pipelines' sections are reduced to a single operational element. The truncated
execution of arithmetic operations also increases the checkability of matrix structures and provides
advantages in on-line testing [38, 39].

However, over several decades of dominance, matrix structures have created a powerful
infrastructure for their resource support, including modern CAD systems [40, 41]. FPGA design
offers built-in iterative array multipliers and accelerated addition of parallel binary codes, as well as
library solutions, which are mainly represented by matrix circuits [42, 43].

Under these conditions, the problem of hidden faults associated with limited checkability of digital
components in safety-related systems should be solved by raising matrix structures to the
diversification level, using the capabilities of FPGA-designing with LUT-oriented architecture [44].

The increasing demands on the functional safety of critical systems require the development of
checkable FPGA components that enable the transformation of fault-tolerant circuits into fail-safe
solutions.

3. Main Provisions of the Method

The purpose of the method is to improve the checkability of digital circuits in FPGA components
used of the safety-related systems. The problem of hidden faults is manifested in the distortion of the
values of the bits read from the memory of the LUT units. The change of program code versions
allows in the normal mode to address to the memory bits of the LUT unit, which in the original
version are observed only with the beginning of the emergency mode. Improving circuit checkability
is based on the use of the program code versions for the LUT-oriented architecture. The proposed
method provides a choice of versions from the maximum possible set.

3.1. Prerequisites for the method

The initial data for the method are the features of the LUT-oriented architecture of FPGA
components. The main feature consists in diversification of the FPGA project by dividing its
resources into hardware and software parts. The hardware used to organize computations has a regular
structure formed by a matrix of identical operational nodes, called configurable logical blocks or
logical elements containing LUT units and one-bit registers [45].

The LUT unit contains SRAM memory, supplemented by a multiplexer for reading a bit from this
memory to the output of the LUT unit. The bit is read at the address that is fed to the inputs of the
LUT unit. The number of m inputs is varied, defining an m-LUT with a memory size of 2m bits and a
2m:1 multiplexer. The memory bits are numbered with an address code from 0 to 2m – 1. The widely
used 4-LUT unit, containing 4 inputs: A, B, C D, addresses 16-bit SRAM memory with bit numbering
from 016 to F16 using a 16:1 multiplexer. Bits a, b, c and d arriving at these inputs form the binary
code of the dcba2 address, which is also the bit number in the memory of the LUT unit. The 16:1
multiplexer is implemented as a tree of 2:1 multiplexers. FPGA project programming is performed by
writing the program code from the configuration file to the memory of the LUT units.

The program code is verified using a checksum and therefore the SRAM of the FPGA project is
checkable. However, the bits of this memory, read by the multiplexer, can be swapped for other bits
as a result of an addressing error caused by faulty 2:1 multiplexer. An error occurs when the values in
the bits located at the correct and erroneous addresses do not match. Otherwise, the switch fault
remains hidden for this program code and can be manifested as an error at the output of the LUT unit
only when this code is changed. Within the framework of the use of the same program code, the
manifestation of the addressing error additionally depends on the input data of the circuit. In this case,
the 2:1 multiplexer failure also becomes hidden in the absence of a corresponding erroneous memory
access. Thus, the LUT memory of units, considered in conjunction with 2:1 multiplexers, can be a
carrier of hidden fault in case of limited use of input data in the normal mode of safety-related systems.

In practice, a limited change in the input data in the normal mode is overcome by their manual
regulation, which for power blocks of nuclear power plants is performed no more than once every six
months. Experiments show that memory bits of LUT units, addressed in normal and emergency mode,
can form non-overlapping sets. This eliminates the possibility of observing the bits used only in
emergency mode in the period before the start of this mode and encourages the use of simulation
mode for testing circuits in emergency conditions.

The proposed method uses version redundancy inherent in FPGA circuits with LUT-oriented
architecture. This redundancy is manifested in the existence of many versions of the program code
that support the specified functionality for the same hardware implementation of the FPGA
component. The basis for creating versions is a pair of LUT units, connecting the output of the first
unit of the pair to the input of the second unit. Each such pair allows to create two versions of the
program code. The original version is supplemented by another version, which differs in the inverse
value of the bit transmitted between the LUT units of the pair. The inverse value of this bit is provided
by inverting the program code written in the memory of the first LUT unit of the pair. The inversion
that occurs at the input of the second LUT unit of the pair is compensated for by changing the places
in the bits of its memory. The change of places occurs between the bits, the numbers of which in the
corresponding bit of the address take on the values 0 and 1.

The presence of two versions of the program code creates conditions for optimizing the circuit by
inverting the memory of individual LUT units or moving their bits. It should be noted that versions
can be created independently for each inverted input of the LUT unit, i.e., an input connected to the
output of the previous unit. For example, a 4-LUT unit can have up to 16 code versions.

In the case of circuit branches, the number of pairs is determined by the number of their first LUT
units. Versions are numbered with a binary code that contains the values of one in bits corresponding
to the inverted LUT inputs of the node. In the case of a 4-LUT unit, the version can be indicated by a
hexadecimal character. For example, version 016 = 00002 is the original version, and version
016 = 01012 is provided by inverting inputs A and C [46, 47].

An important circumstance is the simplicity of changing the versions of the program code in the
LUT units of the FPGA component.

3.2. The essence of the method

The method offers the organization of FPGA components operation with a sequential change of
program code versions as an alternative to manual regulation of input data for their most complete
change in normal mode and as an alternative to the use of simulation mode that increases the
checkability of circuits by recreating emergency operating conditions for safety-related systems and
their components. The purpose of the version change is to improve the checkability of the circuit by
moving bits in the memory of the LUT nodes.

The main idea of the method is to develop the ability to move the memory LUT bits, observed
only in emergency mode, to positions that can be observed during normal mode.

According to the ability of a pair of LUT units to create two versions of the program code, moving
bits is possible only for the memory of the second LUT units of the pair. This limitation excludes a
significant portion of the memory LUT bits from the set of relocatable circuit bits. First of all, the
opportunity to improve the checkability of the circuit is lost in its first-level LUT units, since they
cannot be the second units of the pair.

In pyramidal schemes, the first level is the most numerous. In the absence of branches after the
first and subsequent levels, the use of all inputs of the m-LUT units to connect to the units of the
previous level reduces the number of each next level by a factor of m. In this case, the first level
contains T1 = m k – 1 m-LUT units, where k is the number of levels in the circuit. The number of m-
LUT units in all subsequent levels of the circuit is determined as Т2 ...

k = (m k – 1 – 1) / (m – 1), m > 1.

Difference ΔТ = Т1 – Т2 ...

k and ratio δТ = Т1 / Т2 ...

k are defined as ΔТ = (m k – 1 (m – 2) + 1) / (m – 1)

and δТ = m – 1 + (m k – 1 – 1) – 1, respectively.
For example, for m = 4 and k = 5, the number of 4-LUT units in levels increases from outputs to

inputs of the circuit as follows: 1, 4, 16, 64 and 256. The number of 4-LUT units in the first level and
other levels is T1 = 256 and Т2 ... k = 85, i.e., the first level outnumbers the other levels by more than 3
times (δТ = 3.01).

Connecting individual level inputs bypassing any level reduces the m value for the corresponding
LUT units. However, the inequality Т1 > Т2 ...

k is preserved even for m = 2, since in this case ΔТ = 1.

The pyramidal scheme was considered without branching. However, it should be noted that
branching the outputs of the LUT units does not increase the number of pairs, since they are counted
by their first LUT units.

In addition, it is necessary to take into account the reduction in the number of versions when
connecting the second LUT units of the pair to the inputs of the circuit. Each such connection makes
it impossible to invert the corresponding input of the LUT unit and accordingly halves the number of
versions that can be created for it.

Thus, many versions of the program code are limited by the pyramidal structure of digital circuits,
the presence of branches and connections to the inputs of the circuit.

It is also important to take into account the peculiarities of such matrix circuits as iterative array
multipliers and dividers, which connect n-bit operands to the n2 and (n +1)2 inputs of the operating
elements. This significantly reduces the number of versions in the case of operands coming from the
inputs of a digital circuit.

 The proposed method is aimed at significantly expanding a set of versions by introducing a Z-bit
shift register and Z adders modulo two, where Z is the number of information inputs of the digital
circuit implemented in the FPGA project. A one-to-one correspondence is established between the
bits of the shift register, the adders modulo two and the information inputs of the digital circuit. In the
new FPGA project, its inputs are connected to the inputs of the original circuit by means of the
corresponding adders modulo two, i.e., each input of the FPGA project is connected to the first input
of the corresponding adder modulo two, the second input of which is connected to the output of the
corresponding register bit, and the output serves as the input to the original circuit. Information input
of register and its sync input are additional inputs of the FPGA project, with the help of which the
register code can be set or changed.

Thus, all LUT units following those implementing modulo two adders become the second LUT
units of the pair. They do not have connections to the FPGA inputs of the project and therefore ensure
the creation of the maximum possible number of versions for them. For this, modulo two adders must

provide direct and inverse values at the inputs of the next LUT units. These values are formed by
writing the corresponding sequential code to a register.

The additional circuit increases the computation time by the delay of one LUT unit that
implements the modulo two adder, and therefore does not significantly affect the performance of the
FPGA component”

3.3. Method steps

The proposed method is carried out using the results of FPGA designing of the digital component
under study and a program for simulating calculations performed in the LUT-oriented architecture of
the project, by the sequence of the following steps.

Step 1. The original FPGA project is finalized by introducing an additional circuit consisting of a
shift register and modulo two adders.

Step 2. A description of the resulting LUT-oriented architecture is compiled. Files of description
of inputs, modified FPGA project, connection diagrams of LUT units, their program codes, circuit
outputs are formed.

Step 3. The computation simulation program is supplemented with the compiled description files.
General data on the simulated circuit and its operating modes are established, including the number of
LUT units, circuit inputs and outputs, as well as the ranges of input data change in normal and
emergency modes.

Step 4. The program ranks the circuit by renumbering the LUT units in the course of processing
the input data to perform the logical functions described in the memory of the LUT units in the order
of the assigned numbers.

Step 5. The program iterates over all the input data of the circuit, marking their belonging to the
normal or emergency modes.

Step 6. For each input word, the program simulates the execution of computations and forms an
array of results.

Step 7. For the same input data, the simulation continues by examining the LUT units one by one
for observability of the addressable memory bits. The output of the LUT unit under investigation is
inverted to trace the inverted value in its propagation to the outputs of the circuit. The results obtained
are compared with the results calculated in step 6 to assess the observability of the memory bits
addressed in normal and emergency modes. Arrays N and E are formed, which determine the sets of
MN and ME memory bits of the LUT units observed on the normal mode input data and on the
emergency mode only input data, respectively.

Step 8. Arrays ON and OE of intersection and difference of sets ME and MN are formed. These
arrays identify the bits that are checkable in normal mode and the potentially hazardous bits,
respectively. The distortion of potentially hazardous bits is hidden in normal mode and can manifest
itself as a result error with the onset of emergency mode.

Step 9. Versions of the program code are determined that allow to swap the bits of all second LUT
units of the pair, ensuring that each potentially hazardous bit is moved to the position of the checkable
bit when the register code is zero. In this case, the register and modulo two adders of the complementary
circuit do not affect the computations that are performed according to the original FPGA project. The
version number is determined by the modulo-two sum of the binary codes for the numbers of two
mutually relocatable bits. For example, moving the potentially hazardous bit 316 = 00112 to the
checkable bit position D16 = 11012 is done using version 00112  11012 = 11102 = E16.

Step 10. An array NE is formed that identifies a plurality of MNE bits that are not versioned to
move to checkable positions with the register code zero unchanged. Code versions are defined that
allow the bits of multiple MNE bits to be moved when the register code is changed. The received
versions are assigned to the corresponding register code.

Step 11. An array EE is formed, marking the set of MEE bits that remain potentially hazardous.
They cannot be moved to checkable positions under any version and register codes, since they belong
to the unit's LUT memory, which does not contain the checkable bits.

Thus, the checkability of the scheme is achieved by its operation on a sequence of replaceable
versions, which are provided taking into account the possibility of changing the register code. In this

case, the method allows the possibility of storing a certain number of potentially hazardous bits in the
memory of the LUT units. The MEE sat of such bits is identified in the EE array, and information
about a non-empty MEE set is reported.

3.4. Experimental approbation of the method

The method has been tested on a number of FPGA projects, including iterative array multipliers,
which showed the most typical results. Iterative array multiplier circuits taken from the standard
library LPM_mult CAD Quartus [48] were implemented in the Intel Cyclone 10 LP FPGA chip:
10CL025YU256I7G [49] using CAD Quartus Prime 20.1 Lite Edition [50]. Iterative array multipliers
were investigated for size n = 4, 6 and 8 in FPGA projects before and after the introduction of an
additional circuit composed of modulo two adders and registers. Their introduction increased the
number of LUT units from 30, 61 and 101 to 38, 70 and 116, i.e., by 26.7%, 14.8%, 14.9%,
respectively. The trend towards a decrease in the percentage of additionally introduced LUT units is
explained by the quadratic and linear dependence of the number of LUT units used, respectively, in
iterative array multipliers and additional circuits.

FPGA projects were simulated using a program developed in the Delphi environment on a free
demo version [51].

For each FPGA project, the program conducts 8 experiments, differing by the threshold S, which
separates the ranges of variation of the factors in normal and emergency modes.

For a 4-bit multiplier, the threshold varies from 2 to 9 with a step of 1, taking into account the
change in the factors from 1 to 15. In the case of the threshold S = 2, the factors take only two values
0 and 1 in normal mode and the remaining values from 2 to 15 – in emergency mode. With an
increase in the size n, the initial value of the threshold S retains the value 2, and the step of changing
the threshold increases in accordance with the formula that defines it Δ = 2n – 4, i.e., it grows to
values 4, 16, and 64 for n = 6, 8 and 10, respectively.

The input data of the factors is selected from a 2n-bit code that takes all values from 0 to 22n – 1.
The program allows to view the memory of all LUT units for all values of the threshold S with a

distinction between the bits observed during normal mode and observed only in emergency mode. In
addition, the memory of the LUT units shows non-relocatable potentially hazardous bits when
present.

All this information is shown on the main panel of the program, which is presented in Fig. 1 for
FPGA project of 4-bit multiplier with additional circuit introduced.

The main panel contains controls for exiting the program and starting the simulation: "EXIT" and
"Start", as well as the "LUT # 20" key, which determines the number of the LUT unit considered after
the completion of the simulation. Pressing this key allows to go to the next LUT unit. Scan of LUT
units starts from number 1 and, if necessary, is repeated after reaching the highest number.

The LUT unit under consideration is represented by its memory in the form of bit matrices shown
for eight threshold S values from 2 to 9. The matrix contains 16 squares in which the bit values are
shown. The bit numbers are determined by their position at the intersection of the rows "DC" and
columns "BA" of the matrix, which are numbered 002, 012, 102 and 112. These codes constitute the
dcba2 address, which is also the bit number. For example, the bit at the intersection of row 102 and
column 012 is 10012 = 916.

The image of the memory matrices makes it possible to distinguish between the bits observed in
both modes and only in one of them: normal or emergency. These bits are colored blue, green, and
yellow, respectively. The values of the bits that are observed only in the emergency mode are
highlighted in red or blue, respectively, for cases when these bits are movable and non-movable when
the register code is zero.

The memory matrices show the change in bits in their observability, which occurs with increasing
threshold S for the LUT unit 20. For S = 2, only one bit 016 is observed in normal mode. The rest of
the bits are observed only in emergency mode, including bits 416, 616, C16 and E16, which refer to non-
relocatable bits when the register code is zero and are stored as such for all S < 9.

 Figure 1: Main panel of the program

As the threshold S increases from 3 to 6, bit 816 becomes observed in normal mode. For S = 7, bit
816 is also appended to the bits observed in normal mode. Reaching the threshold S = 8 excludes bit
816 from being monitored in emergency mode. In the case of S = 9, the number of bits observed only
in emergency mode is reduced to two bits: A16 and E16, which are relocatable when the register code
is zero.

Below the memory matrices, the main panel shows the used inputs of the LUT unit in question. Its
inputs, which are the inputs of the project's FPGA circuit, are highlighted in red. The next line shows
the circuit inputs connected to the operands.

The table located on the main panel shows the change in the number of bits in the entire FPGA
project, observed during normal mode (ON line) and only in emergency mode (OE line) when the
threshold S increases from 2 to 9. The number of bits in the ON line increases from 53 to 195, and the

number of bits in the OE line decreases from 179 to 37. The next line shows the number and
percentage of the bits of the set MNE, which have no version to move to checkable positions when the
zero code of register remains unchanged. The last row of the table shows the number and percentage
of bits in the MEE set that remain potentially hazardous because they cannot be moved to checkable
positions due to their absence.

The last line of the main panel shows the number and percentage of the inputs of the LUT units
connected to the inputs of the FPGA of the project.

A set of MEE bits that could be potentially hazardous turned out to be empty in all FPGA projects
studied for all values of the threshold S.

The main results of experiments carried out for the original and advanced iterative array
multipliers are shown in Table. 1, where NE indicates the number and percentage of bits of a plurality
of MNE observed only in emergency mode. The indices denote the size of the iterative array
multipliers, and the "*" symbol refers to the results to advanced multipliers, whose FPGA projects
contain additional scheme.

Table 1
Experiment Results

S 2 2+Δ 2+2Δ 2+3Δ 2+4Δ 2+5Δ 2+6Δ 2+7Δ
NE4 / % 188 / 47.4 147 / 37.1 130 / 32.8 100 / 25.2 157 / 21.0 80 / 20.2 80 / 20.2 47 / 11.8
NE4* / % 34 / 7.4 21 / 4.7 21 / 4.7 16 / 3.6 16 / 3.6 15 / 3.3 15 / 3.3 0 / 0
NE6 / % 272 / 36.3 227 / 30.3 205 / 27.4 175 / 23.4 175 / 23.4 157 / 21.0 157 / 21.0 128 / 17.1
NE6* / % 52 / 5.7 40 / 4.4 40 / 4.4 36 / 3.9 36 / 3.9 35 / 3.8 35 / 3.8 25 / 2.7
NE8 / % 480 / 36.7 425 / 32.5 397 / 30.4 359 / 27.5 359 / 27.5 337 / 25.8 337 / 25.8 300 / 22.9
NE8* / % 69 / 4.3 56 / 3.6 56 / 3.6 48 / 3.1 48 / 3.1 46 / 3.0 46 / 3.0 37 / 2.4

 In addition, the results of the experiments carried out show a significant effect on them by the

number of inputs of the LUT units connected to the inputs of the FPGA of the project (Table 2).

Table 2
Experiment Results

Multipliers 4 4* 6 6* 8 8*
Inputs 57 19 85 37 132 45

% 52 14 41 13 37 10

For all projects, the number of LUT inputs connected to the inputs of the FPGA circuit

monotonically increases in absolute terms and decreases in percentage with an increase in the size of
the iterative array multipliers. However, the original multipliers increase the number of such
connections from 57 to 132, and advanced projects from 19 to 45, i.e., almost 3 times less.

4. Discussion of experimental results

The results of the experiments showed the capabilities of the proposed method to significantly
increase the checkability of the FPGA project.

For the original multipliers, the bits of the MNE set are potentially hazardous, since they are
observed only in emergency mode and have no versions to move to checkable positions. With an
increase in the threshold S, their number decreases from 188, 272 and 480 to 47, 128 and 300 for the
size n = 4, 5 and 8, respectively. In percentage terms, potentially hazardous points range from 47.4%,
36.3% and 36.7% to 11.8%, 17.1% and 22.9%. These estimates indicate low checkability of library
matrix circuits and a real threat to functional safety from potentially hazardous bits of FPGA designs.

For advanced FPGA projects, the bits of the MNE set are also observed only in emergency mode,
but they are not potentially hazardous, since they receive versions for moving to checkable positions
at various non-zero values of the register code. With an increase in the threshold S, the number of

such bits decreases from 34, 52 and 69 to 0, 25 and 37 for size n = 4, 5 and 8, respectively. The
percentage of these bits is reduced from 7.4%, 5.7% and 4.3% to 0%, 2.7% and 2.4%. Since the
experiments carried out did not reveal the bits of the MEE set, then all the advanced FPGA projects
investigated do not contain potentially hazardous points and, therefore, are totally checkable.

The significant reduction in the number of bits in the MNE set of advanced FPGA projects can be
explained by a threefold decrease in the number of LUT inputs connected to the inputs of the FPGA
circuit. This effect, revealed experimentally, is also positive from the standpoint of reducing
restrictions on the creation of versions of program code.

5. Conclusions

Safety-related systems base their own functional safety and the safety of control objects on the use
of fault-tolerant solutions, for which the main threat comes from sources of multiple failures.

Hidden faults, which can be accumulated during a long normal operation and manifest as multiple
failures with the onset of an emergency mode, form one of such sources that require improving the
checkability of systems and their components.

For safety-related systems, FPGA checkability is essential to transform fault-tolerant solutions into
fail-safe ones.

 The LUT-oriented architecture of FPGA projects allows the accumulation of hidden faults that
disrupt the reading of data from the memory of the LUT units.

The proposed method makes it possible to significantly increase the checkability of FPGA
components by changing the versions of the program code and additional possibilities to invert the
inputs of the LUT units.

Experiments have shown the effectiveness of the proposed method, which provided the
transformation of FPGA projects with low checkability into totally checkable solutions.

6. References

[1] S. F. Tyurin, Hyper redundancy for super reliable FPGAs, Radioelectronic and computer systems
1 (2021) 119–132. http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2021.1.11/1449

[2] O. Drozd, V. Romankevich, M. Kuznietsov et. al., Using natural version redundancy of FPGA
projects in area of critical applications, in: Proceedings of the International Conference DESSERT,
2020, pp. 58–63. doi: 10.1109/DESSERT50317.2020.9125050.

[3] M. Farias, R.H.S. Martins, P.I.N. Teixeira, P.V. Carvalho, FPGA-based I&C systems in nuclear
plants, Chemical, Engineering Transactions 53 (2016) 283–288. doi: 10.3303/CET1653048.

[4] J. Bergström, R. van Winsen, E. Henriqson, On the rationale of resilience in the domain of safety: A
literature review, Reliability Engineering and System Safety, 141 (2015) 131–141.

[5] J.-C. Le Coze, Outlines of a sensitising model for industrial safety assessment, Safety Science, 51
(2013) 187–201.

[6] T. Aven, P.Baraldi, R. Flage, E. Zio, Uncertainties in risk assessments, Wiley, Chichester (2014).
[7] Y. Ben-Haim, Doing our best: Optimization and the management of risk, Risk

Analysis, 32 (8) (2012) 1326–1331.
[8] O. Odarushchenko, V. Kharchenko, D. Butenko, V. Butenko, Assessment of the Reactor Trip System

Dependability Two Markov Chains - based Cases, in: Proceedings of the 10th International
Conference on Digital Technologies, Zilina, Slovakia, 2014, pp. 103–109.

[9] J. C. Jung, Improved design architecture to minimize functional complexity of plant protection
system for nuclear power plant, Nucl. Eng. Des., 309 (2016) 97–103.

[10] IAEA Safety Standards, Specific Safety Guide No.SSG-39, Design of Instrumentation and Control
Systems for Nuclear Power Plants, 2016.

[11] I. Atamanyuk, Y. Kondratenko, Computer's analysis method and reliability assessment of fault-
tolerance operation of information systems, in: CEUR Workshop Proceedings, vol. 1356, 2015, pp.
507–522.

[12] A. Romankevich, A. Feseniuk, V. Romankevich, T. Sapsai, About a fault-tolerant multiprocessor
control system in a pre-dangerous state, in: Proceedings of the 9th IEEE International Conference
DESSERT, Kyiv, Ukraine, 2018, pp. 215–219.

[13] C. Wang, L. Xing and G. Levitin, Explicit and Implicit Methods for Probabilistic Common-Cause
Failure Analysis, Reliability Engineering and System Safety, vol. 131, 2014, pp. 175–184.

[14] V. Kharchenko, E. S Bakhmach, A. A. Siora at. al., Diversity-Oriented FPGA-Based NPP I&C
Systems: Safety Assessment, Development, Implementation, in: Proceedings of the 18th
International Conference on Nuclear Engineering, 2010, pp. 755–764.

[15] V. Kharchenko, Dependable Systems and Multi-version Calculations: Aspects of Evolution,
Radioelectronic and Computer Systems, 7 (41) 2009 46–59.

[16] A. A. Gashi, L. Povyakalo, M. Strigini et. al., Diversity for safety and security in embedded systems,
in: Faste Abstracts of the IEEE International Conference on Dependable Systems and Networks,
Atlanta, GA, USA, 2014.

[17] S. Lysenko, K. Bobrovnikova, O. Savenko, A. Kryshchuk, BotGRABBER: SVM-Based Self-
Adaptive System for the Network Resilience Against the Botnets’ Cyberattacks, Communications in
Computer and Information Science 1039 (2019) 127–143.

[18] S. Lysenko, K. Bobrovnikova, O. Savenko, R. Shchuka. A Cyberattacks Detection Technique Based
on Evolutionary Algorithms, in: Proceedings of the 11th IEEE International Conference DESSERT,
Kyiv, Ukraine, 2020, pp. 127–132.

[19] A. Drozd, V. Kharchenko, S. Antoshchuk et. al., Checkability of the digital components in safety-
critical systems: problems and solutions, in: Proceedings of IEEE East-West Design & Test
Symposium, Sevastopol, Ukraine, 2011, pp. 411–416. doi: 10.1109/EWDTS.2011.6116606.

[20] A. Drozd, M. Drozd, V. Antonyuk, “Features of Hidden Fault Detection in Pipeline Components of
Safety-Related System,” CEUR Workshop Proceedings, vol. 1356, 2015, pp. 476–485.

[21] G. S. Spandana, K Hari Kishore, A contemporary approach for fault diagnosis in testable reversible
circuits by employing the CNT gate library, International Journal of Pure and Applied Mathematics,
115 (7) (2017) 537–542.

[22] T. Shah, A. Matrosova, V. Singh, PDF testability of a combinational circuit derived by covering
ROBDD nodes using Invert-And-Or circuits, in: Proceedings of the International Symposium on
VLSI Design and Test, 2015, pp. 1–2.

[23] A.V. Drozd, M.V. Lobachev, Efficient On-line Testing Method for Floating-Point Adder, in:
Proceedings of the Design, Automation and Test in Europe Conference, Munich, Germany, 2001,
pp. 307–311. doi: 10.1109/DATE.2001.915042.

[24] A. Drozd, J. Drozd, S. Antoshchuk et. al., Objects and Methods of On-Line Testing: Main
Requirements and Perspectives of Development, in: Proceedings of the IEEE East-West Design
& Test Symposium, Yerevan, Armenia, 2016, pp. 72–76. doi:10.1109/EWDTS.2016.7807750.

[25] TR 026764, ReSIST: Resilience for Survivability, in: IST. Deliverable D12. Resilience-Building
Technologies: State of Knowledge, 2006.

[26] C. Cachin, S. Tessaro, Optimal Resilience for Erasure Coded Byzantine Distributed Storage, in:
Proceedings of International Conference on Dependable Systems and Networks, 2006.

[27] J. Drozd, A. Drozd, M. Al-dhabi, A resource approach to on-line testing of computing circuits, in:
Proceedings of the IEEE East-West Design & Test Symposium, Batumi, Georgia, 2015, pp. 276–281.
doi: 10.1109/EWDTS.2015.7493122.

[28] O. Drozd, K. Zashcholkin, R. Shaporin, J. Drozd, Y. Sulima, Development of ICT Models in Area of
Safety Education, in: Proceedings of the IEEE EWDT Symposium, Varna, Bulgaria, 2020, pp. 212–
217. doi: 10.1109/EWDTS50664.2020.9224861.

[29] T. Hovorushchenko, O. Pavlova. Evaluating the Software Requirements Specifications Using
Ontology-Based Intelligent Agent, in: Proceedings of IEEE International Scientific and Technical
Conference “Computer Science and Information Technologies”, Lviv, Ukraine, 2018, pp. 215–218.

[30] T. Hovorushchenko, O. Pomorova, Evaluation of Mutual Influences of Software Quality
Characteristics Based ISO 25010:2011, in: Proceedings of the IEEE International Conference,
СSIT-2016, Lviv, Ukraine, 2016, pp. 80–83. doi: 10.1109/STC-CSIT.2016.7589874.

[31] V. Kharchenko, A. Gorbenko, V. Sklyar, C. Phillips, Green Computing and Communications in
Critical Application Domains: Challenges and Solutions, in: Proceedings of 2016 IX International
Conference of Digital Technologies, Zhilina, Slovak Republic, 2013.

[32] J. Drozd, A. Drozd, S. Antoshchuk, Green IT engineering in the view of resource-based approach,” In
book: Green IT Engineering: Concepts, Models, Complex Systems Architectures, vol. 74. Berlin,
Heidelberg: Springer International Publishing, 2017, pp. 43–65. doi: 10.1007/978-3-319-44162-7_3.

[33] V. Hahanov, E. Litvinova, S. Chumachenko, Green Cyber-Physical Computing as Sustainable
Development Model, in: Green IT Engineering: Components, Networks and Systems
Implementation, vol. 105, Springer, Berlin, 2017, pp. 65–86. doi: 10.1007/978-3-319-55595-9_4.

[34] Palagin, A., Opanasenko, V.: The implementation of extended arithmetic’s on FPGA-based
structures, in: IEEE International IDAACS Conference, vol. 2, Bucharest, Romania, pp. 1014–1019
(2017) doi: 10.1109/IDAACS.2017.8095239

[35] J. Drozd, A. Drozd, S. Antoshchuk, at. al., Effectiveness of Matrix and Pipeline FPGA-Based
Arithmetic Components of Safety-Related Systems, in: Proceedings of the IDAACS Conference,
Warsaw, Poland, 2015, pp. 785–789. doi: 10.1109/IDAACS.2015.7341410.

[36] A. Drozd, J. Drozd, S. Antoshchuk et. al., Green Experiments with FPGA. In book: Green IT
Engineering: Components, Networks and Systems Implementation, vol. 105. Berlin, Heidelberg:
Springer International Publishing, 2017, pp. 219–239. doi: 10.1007/978-3-319-55595-9_11.

[37] S. Warren, J. Anderson, FPGA Glitch Power Analysis and Reduction, in: Proceedings of the
International Symposium on Low power electronics and design, Fukuoka, Japan, 2011, pp. 27–32.

[38] J. Drozd, A. Drozd, S. Antoshchuk, V. Kharchenko, Natural Development of the Resources in Design
and Testing of the Computer Systems and their Components, in: Proceedings of the IDAACS
Conference, Berlin, Germany, 2013, pp. 233–237. doi: 10.1109/IDAACS.2013.6662656.

[39] A. Drozd, M. Lobachev, W. Hassonah, Hardware check of arithmetic devices with abridged
execution of operations, in: Proceedings of the European Design & Test Conference, Paris, France,
1996, p. 611. doi: 10.1109/EDTC.1996.494375.

[40] V. Kulanov, V. Kharchenko, A. Perepelitsyn, Parameterized IP Infrastructures for fault-tolerant
FPGA-based systems: Development, assessment, case-study, in: IEEE East-West Design and Test
Symposium EWDTS'10, St. Petersburg, Russia, 2010, pp. 322–325.

[41] C. Unsalan, B. Tar, Digital System Design with FPGA. New-York, McGraw-Hill, 2017.
[42] Intel FPGA Architecture, 2019. URL: https://www.intel.com/content/dam/www/programmable

/us/en/pdfs/literature/wp/wp-01003.pdf
[43] S. F. Tyurin, LUT's Sliding Backup, IEEE transactions on device and materials reliability, 2019

19(1), pp. 221-225. doi: 10.1109/TDMR.2019.2898724.
[44] O. Drozd, M. Kuznietsov, O. Martynyuk, M. Drozd. A method of the hidden faults elimination in

FPGA projects for the critical applications, in: Proceedings of the IEEE International Conference
DESSERT’2018), Kyiv, Ukraine, pp. 231–234, 2018. doi: 10.1109/DESSERT.2018.8409131.

[45] Amagasaki Motoki, Yuichiro Shibata, “FPGA Structure,” in book: Principles and Structures of
FPGAs, H. Amano (edits), Springer, USA, New-York, 2018. pp. 47–86.

[46] O. Drozd, K. Zashcholkin, O. Martynyuk, O. Ivanova, J. Drozd. Development of Checkability in
FPGA Components of Safety-Related Systems. CEUR Workshop Proceedings, vol. 2762, pp. 30–42
(2020). URL: http://ceur-ws.org/Vol-2762/paper1.pdf.

[47] O. Drozd, K. Zashcholkin, O. Martynyuk, O. Ivanova, J. Drozd. Development of Checkability in
FPGA Components of Safety-Related Systems, CEUR Workshop Proceedings 2762 (2020) 30-42.
URL: http://ceur-ws.org/Vol-2762/paper1.pdf.

[48] Intel FPGA Integer Arithmetic IP Cores User Guide.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.p
df.

[49] Intel Cyclone 10 LP Core Fabric and General Purpose I/Os Handbook, 2020. URL:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-10/c10lp-
51003.pdf.

[50] Intel Quartus Prime Standard Edition User Guide, 2020. URL:
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug-qps-
getting-started.pdf.

[51] Delphi 10 Seattle: Embarcadero (2015) https://www.embarcadero. com/ru/products/delphi.

