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Abstract  
The paper is devoted to the problem of checkability of circuits in FPGA components of 
safety-related systems, which are designed to operate in two modes: normal and emergency 
for providing their own functional safety and the safety of control facilities in order to 
prevent accidents and reduce losses in case of their occurrence. Functional safety is ensured 
through the use of fault-tolerant solutions that are sensitive to sources of multiple failures, 
including hidden faults. They can accumulate during a prolonged normal mode with limited 
checkability of the circuits and simultaneously manifest themselves with the beginning of the 
emergency mode. A fault-tolerant structure becomes fail-safe if it is checkable. The problem 
of hidden faults manifests itself in the memory of the LUT units of FPGA components with 
LUT-oriented architecture. The program code written in the memory of the LUT units is 
checked with a checksum, but it can be corrupted when reading its bits on the outputs of the 
LUT units. Bits observed only in emergency mode reduce the checkability of FPGA 
components and are potentially hazardous. Checkability can be increased by the operation of 
circuits on successively replaced versions of the program code that can be obtained for the 
same hardware implementation. Versions move potentially hazardous bits to checkable 
positions observed in normal mode. However, the set of these versions are significantly 
limited by connecting the inputs of the LUT units to the inputs of the FPGA component. The 
proposed method overcomes this limitation by introducing an additional scheme. 
Experimental studies of library FPGA designs show a low level of their checkability and 
efficiency of the proposed method, which provides totally checkable circuits.  
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1. Introduction 

FPGA design is becoming the most advanced direction in the development of digital components 
for computer systems. The advantages of FPGA design, first of all, are based on the combination of 
the technological hardware basis of circuit solutions and the possibility of their programming [1, 2]. 

Recognition of the advantages of FPGA design (Field Programmable Gate Array) is reflected in its 
widespread use in the most responsible areas, including the domain of critical application of computer 
systems for monitoring high-risk facilities [3].  

Power plants and power grids, transport infrastructures, chemical and other high-risk industries are 
directly related to safety problems, which manifests itself in two aspects. On the one hand, these 
facilities provide energy, transport, food and other types of security important for the survival and 
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development of mankind. For this reason, humanity is unable to refuse the further development of 
these objects. On the other hand, this development is accompanied by the quantitative and qualitative 
growth of high-risk objects, which become an integral part of our habitat and constantly increase their 
power, demonstrating it in the event of accidents [4, 5].  

In these conditions, it is necessary to control the risks, which are assessed by two factors: the 
probability of an accident and the cost of its consequences [6, 7]. 

The development of high-risk facilities in the direction of increasing losses caused by accidents 
focuses attention on the problem of containing risks by reducing the probability of an accident. The 
solution to this problem, which is important for the survival of mankind, is provided by the 
development of information technologies implementing in computers, which, taking into account such 
specialization, acquire features that define them as safety-related systems. An important feature of 
critical systems is their designing for operation in two modes: normal and emergency [8, 9]. 

According to international standards, these instrumentation and control systems are aimed at 
ensuring the functional safety of the controlled object in combination with its own functional safety to 
prevent accidents and reduce losses in case of their occurrence [10]. 

The provision of functional safety, which is carried out on the basis of the use of fault-tolerant 
solutions, faces the problem of multiple failures, including hidden faults. Their accumulation during 
normal operation can lead to multiple failures in emergency mode. Faults can accumulate in a digital 
circuit due to its limited checkability as another manifestation of the features of modern safety-related 
systems. In FPGA components with a LUT-oriented (Look-Up Table) architecture, the lack of 
checkability manifests itself in the memory of the LUT units and does not allow fault-tolerant circuits 
to become fail-safe. 

These studies are aimed at designing checkable circuits that convert fault-tolerant FPGA 
components into fail-safe ones. Section 2 examines related works that show the sources of multiple 
failures and disclose the impact of critical system features on the checkability and fail-safety of digital 
circuits. Section 3 describes the main provisions of the proposed method for designing checkable 
circuits for fault-tolerant FPGA components of safety-related systems. Section 4 demonstrates the use 
of the method on the example of iterative array multipliers implemented in FPGA projects. Section 5 
is devoted to a discussion of the results obtained. 

2. Related works 

Ensuring functional safety is associated with the consideration of various factors of its violation, 
among which failures occupy a special place. The problem of failures is solved by using fault-tolerant 
structures, which in the design process acquire the ability to withstand a certain number of failures. 
Most often, a fault tolerant solution is limited to one or two failures that can be mitigated. This 
limitation is explained by considerations of cost savings and a significant decrease in the probability 
of the simultaneous occurrence of independent failures with an increase in their number [11, 12]. 

It should be noted that the low probability of the simultaneous occurrence of many failures, 
including independent ones, does not negate the likelihood of their simultaneous manifestation. For 
this reason, the greatest danger to fault-tolerant circuits and the functional safety provided by them 
comes from sources of multiple faults, for which the assumption of a low probability of multiple 
failures is violated. 

International standards related to functional safety focus on one such source, which combines 
common cause failures [13]. 

This reason is the copying of erroneous decisions that can arise, for example, as a result of design 
errors. The standards propose limiting such copying through the development of multi-version 
technologies that reduce many common causes [14, 15].  

It is important to note that versions are one of the features of the existing universe, since nothing in 
this world is stamped the same. This feature is demonstrated by majority structures, which are fault-
tolerant with respect to the failure of one channel when they are built by stamping three channels. 
Fault tolerance of the majority system is achieved only because each of these channels has a natural 
version redundancy. They cannot be made the same. However, the available natural types of diversity 
are not enough to withstand common cause failures, for example, in the case of using the same 



software that contains a design error in the channels. Therefore, the natural types of diversity are 
supplemented by the types created artificially in the process of development of multi-version 
technologies [16]. 

Ensuring functional safety requires close attention to the sources of multiple failures based on a 
deep analysis of already manifested sources and the search for new sources. 

One of these sources is associated with deliberate malicious interference in computer systems 
through the organization of cyber-attacks. This source has been deeply studied by methods and means 
of information security, which, thus, manifests itself as an important component in ensuring the 
functional safety of critical systems, in particular, in maintaining their integrity [17, 18]. 

It should be noted that common cause failures are primarily a problem for fault-tolerant systems 
and are only indirectly related to functional safety. Multiple failures caused by cyber-attacks are also 
related to more than just critical systems. Moreover, all of these failures are not independent in nature.  

The next source of multiple failures is inherent only in safety-related systems, although it has not 
yet been adequately reflected in the relevant international standards. This source is associated with the 
problem of hidden faults that can be independent and accumulate in safety-related systems during 
long normal mode. This mode can last for many years and decades. As a rule, detection of faults in a 
digital circuit is carried out by logical checking methods by identifying an error in the calculated 
result. In this case, the fault becomes hidden due to the lack of input data that can manifest it in the 
form of an error in the calculated result. In normal mode, the variety of input data is often limited by 
noise. The emergency mode increases the activity of the input data, which manifests itself in the 
expansion of the range of their change. The manifestation of accumulated faults on new input data can 
lead to numerous failures and disrupt the functional safety of the system in the most responsible 
emergency mode [19, 20].  

Hidden faults are not a problem for conventional computers which work in the same operating 
mode. Indeed, the absence of input data showing a malfunction throughout the entire operating mode 
completely excludes the hidden fault from the computational process. Thus, hidden faults occupy a 
special place among multiple failures related to critical systems. 

The presence of hidden faults in the circuit indicates its insufficient checkability. Typically, digital 
circuits are characterized by logical checkability, i.e., suitability for logical checking. 

The limitation of checkability can have various reasons. Testability, which is the simplest form of 
checkability, can be limited by the structural redundancy of a digital circuit. The ability to write tests 
for detection of the faults is completely determined by the circuit design. Therefore, testability is 
structural checkability [21, 22]. 

In the operating mode, the checkability of a digital circuit is limited not only by the structure of the 
digital circuit, but also by its input data, the variety of which may be insufficient for the manifestation 
of some faults. Methods and means of on-line testing using logical checking [23, 24] can detect faults 
in digital circuits only in the case of calculating an erroneous result, i.e., within the framework of 
logical checkability. 

Different conditions for the functioning of digital circuits in the normal and emergency modes of 
the safety-related system are determined, first of all, by different input data, which also determine the 
difference in the checkability of the circuit for these modes. 

The increase in checkability in the emergency mode, which occurs due to the greater variety of 
input data, leads to the problem of hidden faults, which have more opportunities for their 
manifestation in the form of errors in the result. 

Focusing the problem of hidden faults only on safety-related systems does not mean that they are 
inextricably linked. At the same time, such a connection is certainly inherent in modern safety-related 
systems. To free critical systems from this problem, it is necessary to pay attention to its causes, 
which are of an evolutionary nature [25, 26]. 

The resource-based approach that analyzes the integration of the computer world into the natural 
one identifies the problem of hidden faults as a challenge of growth. The evolutionary development of 
models, methods and tools that make up the resources necessary to support integration processes can 
be represented by three levels: replication, diversification and self-sufficiency as the goal of 
development. Replication is characterized by the absence of rigid contact with the natural world in the 
conditions of open resource niches: ecological, market, technological and others, which allow 
churning out resources within these niches without restrictions. Integration is carried out at the 



expense of productivity, the growth of which is stimulated up to the closure of resource niches as a 
result of their filling. From this point on, stamped clones lose the prospect of integration and can only 
survive by exhibiting characteristics that allow them to rise to the level of diversification. At this 
level, integration occurs at the expense of trustworthiness, which manifests itself in the adequacy of 
the natural world [27, 28]. 

In the computer world, all levels of resource development are represented, but replication 
dominates. Open resource niches of performance and memory capacity of modern computers allow 
assembling software products from stamped redundant program modules [29, 30].  

For such solutions, resource niches are closed in energy consumption with the advent of mobile 
computer systems that encourage the development of green technologies, tending to the level of 
diversification [31–33]. 

In hardware, replication is manifested in the growth of matrix structures from homogeneous 
elements. Matrix structures show a number of significant drawbacks due to their low level of 
development. 

For example, an iterative array multiplier that performs an operation on n-bit binary codes in one 
clock cycle consists of n2 operational elements, each of which is used for a small part of the clock 
cycle, since its duration is determined by the serial connection of 2n – 2 elements. For n = 64, the 
useful use of each of the more than 4 thousand operational elements is only 0.8% [34, 35]. 

The rest of the time is spent on parasitic switching, which occurs due to the competition of signals 
propagating along paths of different paths. Parasitic transitions are quantitatively many times greater 
than functional switching and therefore mainly determine the dynamic component of power 
consumption, just as the static component is due to the large size of the matrices [36, 37]. 

The most significant drawback of matrix structures, which manifests itself in relation to safety-
related systems, is their low checkability, due to the processing of data in parallel codes. The iterative 
array multiplier input word, composed of two n-bit binary codes, contains 2n bits and a variety of 22n 
values. The digital multiplier circuitry can accept input data that changes at the noise level and use 
only a few such values throughout normal mode. 

The processing of data in sequential codes constitutes an input word of two bits, taking 4 different 
values, on which the complete checkability of the digital circuit is ensured. This way does not lead to 
a loss in the ratio of performance to complexity when performing bitwise pipelining, where the matrix 
structures of modern pipelines' sections are reduced to a single operational element. The truncated 
execution of arithmetic operations also increases the checkability of matrix structures and provides 
advantages in on-line testing [38, 39]. 

However, over several decades of dominance, matrix structures have created a powerful 
infrastructure for their resource support, including modern CAD systems [40, 41]. FPGA design 
offers built-in iterative array multipliers and accelerated addition of parallel binary codes, as well as 
library solutions, which are mainly represented by matrix circuits [42, 43]. 

Under these conditions, the problem of hidden faults associated with limited checkability of digital 
components in safety-related systems should be solved by raising matrix structures to the 
diversification level, using the capabilities of FPGA-designing with LUT-oriented architecture [44]. 

The increasing demands on the functional safety of critical systems require the development of 
checkable FPGA components that enable the transformation of fault-tolerant circuits into fail-safe 
solutions.   

3. Main Provisions of the Method 

The purpose of the method is to improve the checkability of digital circuits in FPGA components 
used of the safety-related systems. The problem of hidden faults is manifested in the distortion of the 
values of the bits read from the memory of the LUT units. The change of program code versions 
allows in the normal mode to address to the memory bits of the LUT unit, which in the original 
version are observed only with the beginning of the emergency mode. Improving circuit checkability 
is based on the use of the program code versions for the LUT-oriented architecture. The proposed 
method provides a choice of versions from the maximum possible set.  



3.1. Prerequisites for the method 

The initial data for the method are the features of the LUT-oriented architecture of FPGA 
components. The main feature consists in diversification of the FPGA project by dividing its 
resources into hardware and software parts. The hardware used to organize computations has a regular 
structure formed by a matrix of identical operational nodes, called configurable logical blocks or 
logical elements containing LUT units and one-bit registers [45]. 

The LUT unit contains SRAM memory, supplemented by a multiplexer for reading a bit from this 
memory to the output of the LUT unit. The bit is read at the address that is fed to the inputs of the 
LUT unit. The number of m inputs is varied, defining an m-LUT with a memory size of 2m bits and a 
2m:1 multiplexer. The memory bits are numbered with an address code from 0 to 2m – 1. The widely 
used 4-LUT unit, containing 4 inputs: A, B, C D, addresses 16-bit SRAM memory with bit numbering 
from 016 to F16 using a 16:1 multiplexer. Bits a, b, c and d arriving at these inputs form the binary 
code of the dcba2 address, which is also the bit number in the memory of the LUT unit. The 16:1 
multiplexer is implemented as a tree of 2:1 multiplexers. FPGA project programming is performed by 
writing the program code from the configuration file to the memory of the LUT units. 

The program code is verified using a checksum and therefore the SRAM of the FPGA project is 
checkable. However, the bits of this memory, read by the multiplexer, can be swapped for other bits 
as a result of an addressing error caused by faulty 2:1 multiplexer. An error occurs when the values in 
the bits located at the correct and erroneous addresses do not match. Otherwise, the switch fault 
remains hidden for this program code and can be manifested as an error at the output of the LUT unit 
only when this code is changed. Within the framework of the use of the same program code, the 
manifestation of the addressing error additionally depends on the input data of the circuit. In this case, 
the 2:1 multiplexer failure also becomes hidden in the absence of a corresponding erroneous memory 
access. Thus, the LUT memory of units, considered in conjunction with 2:1 multiplexers, can be a 
carrier of hidden fault in case of limited use of input data in the normal mode of safety-related systems. 

In practice, a limited change in the input data in the normal mode is overcome by their manual 
regulation, which for power blocks of nuclear power plants is performed no more than once every six 
months. Experiments show that memory bits of LUT units, addressed in normal and emergency mode, 
can form non-overlapping sets. This eliminates the possibility of observing the bits used only in 
emergency mode in the period before the start of this mode and encourages the use of simulation 
mode for testing circuits in emergency conditions.   

The proposed method uses version redundancy inherent in FPGA circuits with LUT-oriented 
architecture. This redundancy is manifested in the existence of many versions of the program code 
that support the specified functionality for the same hardware implementation of the FPGA 
component. The basis for creating versions is a pair of LUT units, connecting the output of the first 
unit of the pair to the input of the second unit. Each such pair allows to create two versions of the 
program code. The original version is supplemented by another version, which differs in the inverse 
value of the bit transmitted between the LUT units of the pair. The inverse value of this bit is provided 
by inverting the program code written in the memory of the first LUT unit of the pair. The inversion 
that occurs at the input of the second LUT unit of the pair is compensated for by changing the places 
in the bits of its memory. The change of places occurs between the bits, the numbers of which in the 
corresponding bit of the address take on the values 0 and 1. 

The presence of two versions of the program code creates conditions for optimizing the circuit by 
inverting the memory of individual LUT units or moving their bits. It should be noted that versions 
can be created independently for each inverted input of the LUT unit, i.e., an input connected to the 
output of the previous unit. For example, a 4-LUT unit can have up to 16 code versions. 

In the case of circuit branches, the number of pairs is determined by the number of their first LUT 
units. Versions are numbered with a binary code that contains the values of one in bits corresponding 
to the inverted LUT inputs of the node. In the case of a 4-LUT unit, the version can be indicated by a 
hexadecimal character. For example, version 016 = 00002 is the original version, and version 
016 = 01012 is provided by inverting inputs A and C [46, 47]. 

An important circumstance is the simplicity of changing the versions of the program code in the 
LUT units of the FPGA component.   



3.2. The essence of the method 

The method offers the organization of FPGA components operation with a sequential change of 
program code versions as an alternative to manual regulation of input data for their most complete 
change in normal mode and as an alternative to the use of simulation mode that increases the 
checkability of circuits by recreating emergency operating conditions for safety-related systems and 
their components. The purpose of the version change is to improve the checkability of the circuit by 
moving bits in the memory of the LUT nodes. 

The main idea of the method is to develop the ability to move the memory LUT bits, observed 
only in emergency mode, to positions that can be observed during normal mode. 

According to the ability of a pair of LUT units to create two versions of the program code, moving 
bits is possible only for the memory of the second LUT units of the pair. This limitation excludes a 
significant portion of the memory LUT bits from the set of relocatable circuit bits. First of all, the 
opportunity to improve the checkability of the circuit is lost in its first-level LUT units, since they 
cannot be the second units of the pair. 

In pyramidal schemes, the first level is the most numerous. In the absence of branches after the 
first and subsequent levels, the use of all inputs of the m-LUT units to connect to the units of the 
previous level reduces the number of each next level by a factor of m. In this case, the first level 
contains T1 = m k – 1 m-LUT units, where k is the number of levels in the circuit. The number of m-
LUT units in all subsequent levels of the circuit is determined as Т2 ...

 
k = (m k – 1 – 1) / (m – 1), m > 1. 

Difference ΔТ = Т1 – Т2 ...
 
k and ratio δТ = Т1 / Т2 ...

 
k are defined as ΔТ = (m k – 1 (m – 2) + 1) / (m – 1) 

and δТ = m – 1 + (m k – 1 – 1) – 1, respectively.  
For example, for m = 4 and k = 5, the number of 4-LUT units in levels increases from outputs to 

inputs of the circuit as follows: 1, 4, 16, 64 and 256. The number of 4-LUT units in the first level and 
other levels is T1 = 256 and Т2 ... k = 85, i.e., the first level outnumbers the other levels by more than 3 
times (δТ = 3.01). 

Connecting individual level inputs bypassing any level reduces the m value for the corresponding 
LUT units. However, the inequality Т1 > Т2 ...

 
k is preserved even for m = 2, since in this case ΔТ = 1. 

The pyramidal scheme was considered without branching. However, it should be noted that 
branching the outputs of the LUT units does not increase the number of pairs, since they are counted 
by their first LUT units. 

In addition, it is necessary to take into account the reduction in the number of versions when 
connecting the second LUT units of the pair to the inputs of the circuit. Each such connection makes 
it impossible to invert the corresponding input of the LUT unit and accordingly halves the number of 
versions that can be created for it. 

Thus, many versions of the program code are limited by the pyramidal structure of digital circuits, 
the presence of branches and connections to the inputs of the circuit. 

It is also important to take into account the peculiarities of such matrix circuits as iterative array 
multipliers and dividers, which connect n-bit operands to the n2 and (n +1)2 inputs of the operating 
elements. This significantly reduces the number of versions in the case of operands coming from the 
inputs of a digital circuit. 

 The proposed method is aimed at significantly expanding a set of versions by introducing a Z-bit 
shift register and Z adders modulo two, where Z is the number of information inputs of the digital 
circuit implemented in the FPGA project. A one-to-one correspondence is established between the 
bits of the shift register, the adders modulo two and the information inputs of the digital circuit. In the 
new FPGA project, its inputs are connected to the inputs of the original circuit by means of the 
corresponding adders modulo two, i.e., each input of the FPGA project is connected to the first input 
of the corresponding adder modulo two, the second input of which is connected to the output of the 
corresponding register bit, and the output serves as the input to the original circuit. Information input 
of register and its sync input are additional inputs of the FPGA project, with the help of which the 
register code can be set or changed. 

Thus, all LUT units following those implementing modulo two adders become the second LUT 
units of the pair. They do not have connections to the FPGA inputs of the project and therefore ensure 
the creation of the maximum possible number of versions for them. For this, modulo two adders must 



provide direct and inverse values at the inputs of the next LUT units. These values are formed by 
writing the corresponding sequential code to a register.  

The additional circuit increases the computation time by the delay of one LUT unit that 
implements the modulo two adder, and therefore does not significantly affect the performance of the 
FPGA component” 

3.3. Method steps 

The proposed method is carried out using the results of FPGA designing of the digital component 
under study and a program for simulating calculations performed in the LUT-oriented architecture of 
the project, by the sequence of the following steps. 

Step 1. The original FPGA project is finalized by introducing an additional circuit consisting of a 
shift register and modulo two adders. 

Step 2. A description of the resulting LUT-oriented architecture is compiled. Files of description 
of inputs, modified FPGA project, connection diagrams of LUT units, their program codes, circuit 
outputs are formed. 

Step 3. The computation simulation program is supplemented with the compiled description files. 
General data on the simulated circuit and its operating modes are established, including the number of 
LUT units, circuit inputs and outputs, as well as the ranges of input data change in normal and 
emergency modes. 

Step 4. The program ranks the circuit by renumbering the LUT units in the course of processing 
the input data to perform the logical functions described in the memory of the LUT units in the order 
of the assigned numbers. 

Step 5. The program iterates over all the input data of the circuit, marking their belonging to the 
normal or emergency modes. 

Step 6. For each input word, the program simulates the execution of computations and forms an 
array of results. 

Step 7. For the same input data, the simulation continues by examining the LUT units one by one 
for observability of the addressable memory bits. The output of the LUT unit under investigation is 
inverted to trace the inverted value in its propagation to the outputs of the circuit. The results obtained 
are compared with the results calculated in step 6 to assess the observability of the memory bits 
addressed in normal and emergency modes. Arrays N and E are formed, which determine the sets of 
MN and ME memory bits of the LUT units observed on the normal mode input data and on the 
emergency mode only input data, respectively. 

Step 8. Arrays ON and OE of intersection and difference of sets ME and MN are formed. These 
arrays identify the bits that are checkable in normal mode and the potentially hazardous bits, 
respectively. The distortion of potentially hazardous bits is hidden in normal mode and can manifest 
itself as a result error with the onset of emergency mode. 

Step 9. Versions of the program code are determined that allow to swap the bits of all second LUT 
units of the pair, ensuring that each potentially hazardous bit is moved to the position of the checkable 
bit when the register code is zero. In this case, the register and modulo two adders of the complementary 
circuit do not affect the computations that are performed according to the original FPGA project. The 
version number is determined by the modulo-two sum of the binary codes for the numbers of two 
mutually relocatable bits. For example, moving the potentially hazardous bit 316 = 00112 to the 
checkable bit position D16 = 11012 is done using version 00112  11012 = 11102 = E16.  

Step 10. An array NE is formed that identifies a plurality of MNE bits that are not versioned to 
move to checkable positions with the register code zero unchanged. Code versions are defined that 
allow the bits of multiple MNE bits to be moved when the register code is changed. The received 
versions are assigned to the corresponding register code.  

Step 11. An array EE is formed, marking the set of MEE bits that remain potentially hazardous. 
They cannot be moved to checkable positions under any version and register codes, since they belong 
to the unit's LUT memory, which does not contain the checkable bits. 

Thus, the checkability of the scheme is achieved by its operation on a sequence of replaceable 
versions, which are provided taking into account the possibility of changing the register code. In this 



case, the method allows the possibility of storing a certain number of potentially hazardous bits in the 
memory of the LUT units. The MEE sat of such bits is identified in the EE array, and information 
about a non-empty MEE set is reported. 

3.4. Experimental approbation of the method 

The method has been tested on a number of FPGA projects, including iterative array multipliers, 
which showed the most typical results. Iterative array multiplier circuits taken from the standard 
library LPM_mult CAD Quartus [48] were implemented in the Intel Cyclone 10 LP FPGA chip: 
10CL025YU256I7G [49] using CAD Quartus Prime 20.1 Lite Edition [50]. Iterative array multipliers 
were investigated for size n = 4, 6 and 8 in FPGA projects before and after the introduction of an 
additional circuit composed of modulo two adders and registers. Their introduction increased the 
number of LUT units from 30, 61 and 101 to 38, 70 and 116, i.e., by 26.7%, 14.8%, 14.9%, 
respectively. The trend towards a decrease in the percentage of additionally introduced LUT units is 
explained by the quadratic and linear dependence of the number of LUT units used, respectively, in 
iterative array multipliers and additional circuits. 

FPGA projects were simulated using a program developed in the Delphi environment on a free 
demo version [51]. 

For each FPGA project, the program conducts 8 experiments, differing by the threshold S, which 
separates the ranges of variation of the factors in normal and emergency modes. 

For a 4-bit multiplier, the threshold varies from 2 to 9 with a step of 1, taking into account the 
change in the factors from 1 to 15. In the case of the threshold S = 2, the factors take only two values 
0 and 1 in normal mode and the remaining values from 2 to 15 – in emergency mode. With an 
increase in the size n, the initial value of the threshold S retains the value 2, and the step of changing 
the threshold increases in accordance with the formula that defines it Δ = 2n – 4, i.e., it grows to 
values 4, 16, and 64 for n = 6, 8 and 10, respectively. 

The input data of the factors is selected from a 2n-bit code that takes all values from 0 to 22n – 1. 
The program allows to view the memory of all LUT units for all values of the threshold S with a 

distinction between the bits observed during normal mode and observed only in emergency mode. In 
addition, the memory of the LUT units shows non-relocatable potentially hazardous bits when 
present. 

All this information is shown on the main panel of the program, which is presented in Fig. 1 for 
FPGA project of 4-bit multiplier with additional circuit introduced. 

The main panel contains controls for exiting the program and starting the simulation: "EXIT" and 
"Start", as well as the "LUT # 20" key, which determines the number of the LUT unit considered after 
the completion of the simulation. Pressing this key allows to go to the next LUT unit. Scan of LUT 
units starts from number 1 and, if necessary, is repeated after reaching the highest number. 

The LUT unit under consideration is represented by its memory in the form of bit matrices shown 
for eight threshold S values from 2 to 9. The matrix contains 16 squares in which the bit values are 
shown. The bit numbers are determined by their position at the intersection of the rows "DC" and 
columns "BA" of the matrix, which are numbered 002, 012, 102 and 112. These codes constitute the 
dcba2 address, which is also the bit number. For example, the bit at the intersection of row 102 and 
column 012 is 10012 = 916. 

The image of the memory matrices makes it possible to distinguish between the bits observed in 
both modes and only in one of them: normal or emergency. These bits are colored blue, green, and 
yellow, respectively. The values of the bits that are observed only in the emergency mode are 
highlighted in red or blue, respectively, for cases when these bits are movable and non-movable when 
the register code is zero. 

The memory matrices show the change in bits in their observability, which occurs with increasing 
threshold S for the LUT unit 20. For S = 2, only one bit 016 is observed in normal mode. The rest of 
the bits are observed only in emergency mode, including bits 416, 616, C16 and E16, which refer to non-
relocatable bits when the register code is zero and are stored as such for all S < 9. 



 
 Figure 1: Main panel of the program 
 

As the threshold S increases from 3 to 6, bit 816 becomes observed in normal mode. For S = 7, bit 
816 is also appended to the bits observed in normal mode. Reaching the threshold S = 8 excludes bit 
816 from being monitored in emergency mode. In the case of S = 9, the number of bits observed only 
in emergency mode is reduced to two bits: A16 and E16, which are relocatable when the register code 
is zero. 

Below the memory matrices, the main panel shows the used inputs of the LUT unit in question. Its 
inputs, which are the inputs of the project's FPGA circuit, are highlighted in red. The next line shows 
the circuit inputs connected to the operands. 

The table located on the main panel shows the change in the number of bits in the entire FPGA 
project, observed during normal mode (ON line) and only in emergency mode (OE line) when the 
threshold S increases from 2 to 9. The number of bits in the ON line increases from 53 to 195, and the 



number of bits in the OE line decreases from 179 to 37. The next line shows the number and 
percentage of the bits of the set MNE, which have no version to move to checkable positions when the 
zero code of register remains unchanged. The last row of the table shows the number and percentage 
of bits in the MEE set that remain potentially hazardous because they cannot be moved to checkable 
positions due to their absence. 

The last line of the main panel shows the number and percentage of the inputs of the LUT units 
connected to the inputs of the FPGA of the project. 

A set of MEE bits that could be potentially hazardous turned out to be empty in all FPGA projects 
studied for all values of the threshold S. 

The main results of experiments carried out for the original and advanced iterative array 
multipliers are shown in Table. 1, where NE indicates the number and percentage of bits of a plurality 
of MNE observed only in emergency mode. The indices denote the size of the iterative array 
multipliers, and the "*" symbol refers to the results to advanced multipliers, whose FPGA projects 
contain additional scheme.  
 
Table 1 
Experiment Results 

S 2 2+Δ 2+2Δ 2+3Δ 2+4Δ 2+5Δ 2+6Δ 2+7Δ 
NE4 / % 188 / 47.4 147 / 37.1 130 / 32.8 100 / 25.2 157 / 21.0 80 / 20.2 80 / 20.2 47 / 11.8 
NE4* / % 34 / 7.4 21 / 4.7 21 / 4.7 16 / 3.6 16 / 3.6 15 / 3.3 15 / 3.3 0 / 0 
NE6 / % 272 / 36.3 227 / 30.3 205 / 27.4 175 / 23.4 175 / 23.4 157 / 21.0 157 / 21.0 128 / 17.1 
NE6* / % 52 / 5.7 40 / 4.4 40 / 4.4 36 / 3.9 36 / 3.9 35 / 3.8 35 / 3.8 25 / 2.7 
NE8 / % 480 / 36.7 425 / 32.5 397 / 30.4 359 / 27.5 359 / 27.5 337 / 25.8 337 / 25.8 300 / 22.9 
NE8* / % 69 / 4.3 56 / 3.6 56 / 3.6 48 / 3.1 48 / 3.1 46 / 3.0 46 / 3.0 37 / 2.4 

  
 In addition, the results of the experiments carried out show a significant effect on them by the 

number of inputs of the LUT units connected to the inputs of the FPGA of the project (Table 2). 
 

Table 2 
Experiment Results 

Multipliers 4 4* 6 6* 8 8* 
Inputs 57 19 85 37 132 45 

% 52 14 41 13 37 10 
  
For all projects, the number of LUT inputs connected to the inputs of the FPGA circuit 

monotonically increases in absolute terms and decreases in percentage with an increase in the size of 
the iterative array multipliers. However, the original multipliers increase the number of such 
connections from 57 to 132, and advanced projects from 19 to 45, i.e., almost 3 times less.  

4. Discussion of experimental results 

The results of the experiments showed the capabilities of the proposed method to significantly 
increase the checkability of the FPGA project. 

For the original multipliers, the bits of the MNE set are potentially hazardous, since they are 
observed only in emergency mode and have no versions to move to checkable positions. With an 
increase in the threshold S, their number decreases from 188, 272 and 480 to 47, 128 and 300 for the 
size n = 4, 5 and 8, respectively. In percentage terms, potentially hazardous points range from 47.4%, 
36.3% and 36.7% to 11.8%, 17.1% and 22.9%. These estimates indicate low checkability of library 
matrix circuits and a real threat to functional safety from potentially hazardous bits of FPGA designs. 

For advanced FPGA projects, the bits of the MNE set are also observed only in emergency mode, 
but they are not potentially hazardous, since they receive versions for moving to checkable positions 
at various non-zero values of the register code. With an increase in the threshold S, the number of 



such bits decreases from 34, 52 and 69 to 0, 25 and 37 for size n = 4, 5 and 8, respectively. The 
percentage of these bits is reduced from 7.4%, 5.7% and 4.3% to 0%, 2.7% and 2.4%. Since the 
experiments carried out did not reveal the bits of the MEE set, then all the advanced FPGA projects 
investigated do not contain potentially hazardous points and, therefore, are totally checkable. 

The significant reduction in the number of bits in the MNE set of advanced FPGA projects can be 
explained by a threefold decrease in the number of LUT inputs connected to the inputs of the FPGA 
circuit. This effect, revealed experimentally, is also positive from the standpoint of reducing 
restrictions on the creation of versions of program code. 

5. Conclusions 

Safety-related systems base their own functional safety and the safety of control objects on the use 
of fault-tolerant solutions, for which the main threat comes from sources of multiple failures. 

Hidden faults, which can be accumulated during a long normal operation and manifest as multiple 
failures with the onset of an emergency mode, form one of such sources that require improving the 
checkability of systems and their components. 

For safety-related systems, FPGA checkability is essential to transform fault-tolerant solutions into 
fail-safe ones. 

 The LUT-oriented architecture of FPGA projects allows the accumulation of hidden faults that 
disrupt the reading of data from the memory of the LUT units. 

The proposed method makes it possible to significantly increase the checkability of FPGA 
components by changing the versions of the program code and additional possibilities to invert the 
inputs of the LUT units. 

Experiments have shown the effectiveness of the proposed method, which provided the 
transformation of FPGA projects with low checkability into totally checkable solutions.   
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