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Abstract  
This paper presents a program system called an algebraic virtual machine (AVM), which 

handles industrial hardware specifications, programs in different languages, and models in 

algebraic language. It uses the formal algebraic methods that were developed in the scope of 

behavior algebra and help to resolve the problems of verification, analysis, testing, and 

cybersecurity. It permits the possibility of creating your own methods and theories and trying 

them with industrial examples with minimal efforts. The machine learning technique is used 

for the definition of formal method efficiency, and the classification model is trained during 

algebraic processing. The formalization and checking for resistance of blockchain attack is 

considered.  
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1. Introducing the Algebraic Virtual Machine (AVM) Platform 

A variety of tools for conducting an automatic analysis of formal specifications have been 

developed in recent years and have been successfully applied in different subject domains. 

Concurrently, there were continual efforts to build a unifying framework that would make the 

integration of different techniques easy. CoFI (informatik.uni-bremen.de/cofi/index.php/CoFI) is the 

most famous example of a com-mon agreement for algebraic specifications languages. 

However, usage of the general approaches requires an extensive mathematical background for 

adapting them to solve specific problems, and specialized high-performance industrial tools are not 

easily transferred to another domain. 

The algebraic virtual machine (AVM) is a platform for the application of algebraic methods in 

analyzing formal specifications. It is assumed that these specifications are derived from industrial 

engineering languages, and the main idea of this project is to bridge the gap between formal methods 

and engineering and allow for the possibility of checking the results of fundamental research for 

industrial specifications. 

AVM is a Web-oriented tool created by the authors of systems and augmented by other users that 

access servers storing programs that use formal methods. It was initially created as a tool for the 

verification of requirements that are given in a formal way. This encompasses the first stage of the 

software/hardware development life cycle, which is the creation of a formal presentation of 

requirements. This can be gathered as standard formal requirements specifications, as in the business 

process modeling notation (BPMN) [1] or systems modeling language (SysML) [2], or it can be 

created as an algebraic specification that was the input of a verification system. With AVM, the 

standard language was automatically translated to algebraic input and sent to an algebraic server for 

verification processing, and it initially detected issues with inconsistency, incompleteness of 

requirements, safety, and liveness properties. 
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The input algebraic specifications were created as behavior algebra equations for further 

application of the theory and methods. The quick development of behavior algebra caused the 

appearance of efficient methods that were used for verification and testing needs. It was also the 

applied object of model-driven development in other stages of the life cycle. Thus, the languages of 

design, such as UML [3], UCM [4], and VHDL [5], were automatically converted to algebraic 

specifications for the analysis of design specifications at the corresponding stage of 

software/hardware development. The languages of developed products, including C, Java, and other 

programming languages, as well as the specifications of machine instructions were converted to the 

algebraic presentation for further checking of cybersecurity issues. 

The AVM platform was created in 2020 as the result of 20 years of research in the formal methods 

application domain and experience with industrial deployment. It is not limited to model-driven 

development. The total scheme for the AVM platform is given in Fig. 1. 

 

 
 

 Figure 1: A high-level diagram showing the design of AVM 
 

In a nutshell, AVM consists of four main parts: 

1. An algebraic server that contains the formal methods for different theories, corresponding 

solving machines developed within the scope of AVM, and third-party solvers such as 

cvc4, Z3 Microsoft Solver, and more. It contains the corresponding databases for solving 

assistance, with histories of solutions for further machine learning of optimal reasoning for 

a given theory; a database of estimation of formal methods’ efficiencies for corresponding 

specifications; and a database of algebraic patterns for resolving algebraic matching 

problems. 

2. The front end contains the line of translators from formal languages to behavior algebra 

specifications. It can be program code in C, Java, or Intel x86 instructions; design 

specifications in UML or UCM; requirements specifications in BPMN or SysML; 

hardware specifications in VHDL; and manually created models. 

3. Formal method developer assistance includes the possibility of adding the new author’s 

methods to uses of the algebraic programming system (APS). 

4. The AVM machine learning system contains the model of classification of recommended 

methods for given input specifications, which is training as it is functioning. 

There are different types of uses for AVM. For instance, a user who has to verify or analyze formal 

specifications in a particular language can input the specifications and select the proper method. Or, if 

the user defines the goal, they can follow the system’s advice. For example, a user can create a 

science model from biology or other science and request the necessary analysis or modeling. The 

developers of formal methods can create their own methods and try them on the industrial 

specifications, like a program code or hardware specifications. We will consider the parts of the 

system in detail in the next sections. 
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2. Algebraic server 

The algebraic server deals with specifications of behavior algebra that were invented by David 

Gilbert and Alexander Letichevsky in 1999 [6]. 

In difference of other approaches, agents and environments are considred as objects of different 

types. Environments are introduced as agents supplied with functions used for the insertion of other 

agents into these environments. 

Basic behavior algebra is a two-sorted universal algebra. The main sort is a set of behaviors, and 

the second sort is a set of actions. The algebra has two operations, three terminal constants, and an 

approximation relation. The operations are the prefixing a.u (where a is an action and u is a behavior) 

and non-deterministic choice of behaviors u + v (associative, commutative, and idempotent operations 

on the set of behaviors). The terminal constants are successful termination ∆, deadlock 0, and non-

determinate behavior ⊥. The approximation relation ⊑ is a complete partial order on the set of 

behaviors with minimal element ⊥. 

The action in behavior algebra is expressed by means of the Basic language that was developed 

within the scope of APS [7]. The language is built over some attribute environment where agents 

interact with one another, and every agent is defined by a set of attributes. An agent changes its state 

under certain conditions formed by the values of attributes.  

Every agent’s action is defined by three conditions, represented by B = <P, A, S>, where P is a 

precondition of the action presented as a formula in some basic logic language, S is a postcondition, 

and A is a process that illustrates agent transition.  

As a basic logical language, we considered the set of formulas of first-order logic over linear 

arithmetic, algebra of free terms, and string processing. However, the other theories can be added with 

corresponding solving machines. As a whole, the semantic of an action is that the agent can change its 

state if the precondition is true, and the state of a system will correspondingly change to the 

postcondition, which is also a formula of first-order logic. 

 The process of action depends on the subject domain and illustrates the sequence of action 

application. In a telecommunications domain, it can be the sending or receiving of signals with 

corresponding parameters. 

The set of solvers is presented in the server environment. Included are the system of automatic 

theorem proving and solvers that are based on heuristics and known algorithms, such as Pressburger 

arithmetics, Fourier–Motzkin algorithm, string, byte, and enumerated type solvers. The server can 

also use third-party solvers such as Microsoft Solver Z3, cvc4, and other open-source solving 

machines. 

The main problem that an algebraic server resolves is the analysis of a system’s behavior for the 

purpose of verification and research of properties. A consequence is the generation of one or a set of 

scenarios of behavior for testing purposes. There are a number of methods that have been developed 

during the last two decades within the scope of behavior algebra, including the following: 

1. Property reachability definition methods. These are based on a number of approaches, 

including symbolic modeling (forward and backward), slicing dependency analysis, invariant 

generation, approximation methods, and enlarging of actions. 

2. Algebraic matching of behavior methods. This involves matching a system’s behavior with 

patterns of behavior. 

3. Scenario generation and test execution methods. This method includes the generation of 

scenarios with required coverage of the model for black-box testing. The symbolic modeling 

methods allow for backward testing, where the model of the system to be tested is executed and 

compared with the behavior of the model of the testing system. This gives the possibility of 

controlling the coverage of the tested system. 

The algebraic server allows for conducting static proving of statements like the safety properties, 

which are stored in the database or user-defined properties; classical properties like inconsistency, 

incompleteness, stuttering, and starvation; annotation statements (assertions, contracts in a program 

system); time properties; and domain-specific properties like read–write issues, memory coherency, 

signal races. 



In addition, the algebraic server encompasses the server assistance system that contains the 

database of frequently proved statements for reduction of the proving time. It also contains the 

classification model for assistance with proving. It works for theories that contain a set of axioms, 

theorems, and intermediate formulas for the efficient definition of the proving step. The classification 

model should be generated by using machine learning techniques for the training of possible proofs in 

the scope of the theory. 

The problem of algebraic matching can be applied to the detection of vulnerabilities in a code, and 

the corresponding set of vulnerabilities in behavior patterns for software/hardware systems is located 

in the database. Another database contains a set of patterns with possible attacks on 

software/hardware systems. 

The inputs of an algebraic server are behavior algebra specifications and a request to launch the 

corresponding resolutions to the problem. The output can be presented as a verdict with counter-

examples. During the performing of algebraic methods, information on the progress is sent to the 

front end. 

3. Front-End component 

The front-end component has the ability to accept input of different industrial specifications for 

software/hardware. There are programming languages such as C, Java; design specifications such as 

UML and UCM; requirements specifications that include BPMN and SysML; hardware specifications 

like VHDL and System Verilog; and disassembled binary code as the set of machine instructions for 

Intel x86. 

All input specifications can be translated to the algebraic specifications as a system of behavior 

algebra equations. The translation is performed corresponding to the semantics of input specifications 

in the terms of behavior algebra. Fig. 2 is an example of the conversion of binary code specifications. 

 

 

 
Figure 2: Translation of assembler x86 code to algebraic specifications 

 

After translation, the result is a set of behavior equations and a set of actions that present the 

semantics of the input code. The example shown in Fig. 3 is the translation of the VHDL hardware 

language into behavior algebra expressions. 

 

 



 
Figure 3: Translation of VHDL code to algebraic specifications 

 

The algebraic specifications can be input directly, which is suitable when we describe a model for 

researching its properties, such as biological models, blockchain algorithms, economical models, and 

physical models.  

The special client program was developed for the purpose of creating such models. Fig. 4 shows 

the main windows of the client. 

 

 

 
Figure 4: The main window of the AVM client for the model creating 

 

The tasks that can be performed with specifications include verification of specifications for 

different levels of abstractions, starting from requirements; design to program code specifications and 

binary code; vulnerability detection in software/hardware systems; reachability of properties that 

demand the use of formal methods; generation of a scenario for testing of software/hardware (model-

based testing); and static proving of properties. 

The front end allows for the possibility of monitoring the modeling process through a graphical 

presentation. The front end contains the number of programs for a specific subject domain, such as 

blockchain generation, and the behavior of the signals in the circuit. Any new graphical program can 

be connected via API with the front-end component. 



4. Adding New Methods 

One of the benefits of AVM is the possibility of adding a new theory or a new formal method and 

trying it with the existing input specifications. The user can add a new solver for different theories 

using the existing API or a set of axioms and formulas with corresponding rules of reasoning. 

The usage of an automated theorem system can be performed within the scope of the reachability 

finding task, but a user restriction is the need to work with behavior algebra. With the use of API, a 

user can insert the new method and insert a compiled black-box program written in any language and 

connected with AVM via a special interface. On the server side, it can use the components of the 

AVM with, for example, symbolic modeling, predicate transformation, and traversal of the behavior. 

The embedded APS with the APLAN language gives the possibility of using the corresponding 

patterns of algebraic programming for the creation of a new method that can deal with new theories. 

The new theory can be presented in arbitrary syntax that will be expressed by generic APLAN 

constructions. A special library, the clew library, is intended for the processing of arbitrary terms. In 

this way, the new rules of reasoning and axioms with additional theorems or lemmas can be 

presented. The APLAN library has a collection of different theory syntax and formulas, including 

temporal and other logics.   

5. Method Efficiency Estimation 

A great number of the formal methods in the scope of the different theories and specifications can 

entail difficulties with their use. Similarly, the structure of the behavior of different systems can affect 

the efficiency of the traversal strategy with different tunings of the formal methods. For example, 

reachability searching methods contain more than 20 different kinds of methods and a dozen settings. 

Symbolic modeling can be implemented for searches in depth, in width, with repetition of the path, 

backward modeling, and many other ways. 

For the definition of the efficiency of formal methods, we generate a model of classification 

corresponding to the input specification. During the work with algebraic specifications, the algebraic 

server tries to perform other methods to resolve the requested problem. Using machine learning 

techniques, the model of classification is trained with the input algebraic specifications and generates 

a neural network for further classification in selecting the formal method for input specifications.     

6. Case Study 

This case uses AVM to analyze consensus algorithms’ ability to resist fraud attacks, such as 

double-spending. Several papers have proven the conditions of the possibilities of different attacks. 

For example, Jang and Lee [8] created a model of a double-spending attack and defined the conditions 

of its possibility by using probability methods for the BitcoinCash network; Losa and Dodds [9] 

presented verification of the BFT consensus protocol; and in [10], the authors studied the verification 

of Proof-of-Vote protocol and resistance to selfish mining attack. In terms of analyzing attack 

resistance, we present a common approach for the analysis of a consensus protocol. Our approach is 

based on the model of a consensus algorithm’s creation in terms of behavior algebra with agents and 

the environment interaction theory. We use algebraic modeling and derive methods to prove the 

reachability of a property that describes the state of vulnerability or possible attack. A consensus 

algorithm can be presented as an interaction between agents in an environment. In the scope of agents 

and environment interaction theory, we create the type of agent NODE that is defined by the typed 

attributes, such as integer, Boolean, or enumerated.  

 

NODE : obj( 
   block : (int, int) -> int, 

ref : (int, int) -> int, 
   FORKS : int, 
   forkLength : (int)->int 

https://ui.adsabs.harvard.edu/#search/q=author:%22Jang%2C+Jehyuk%22&sort=date%20desc,%20bibcode%20desc
https://ui.adsabs.harvard.edu/#search/q=author:%22Lee%2C+Heung-No%22&sort=date%20desc,%20bibcode%20desc


   nonFinalized : int 
  ) 
The attribute FORKS defines the number of forks in the blockchain. While block (i,j) is the block 

number in the fork i in timeslot j, ref (i,j) is a parametrized attribute that defines the reference to block 

number j from fork i. The length of the forks is defined by the attribute forkLength, and the number of 

non-finalized blocks in the blockchain is nonFinalized.   

We consider some generalized consensus algorithm that works for set of nodes. Each node creates 

blocks and sends them to others, which must receive them within a specific time slot. Receiving can 

be delayed, and blocks can be received later, creating forks in the blockchain. We abstract how the 

algorithm copes with the delay blocks and do not consider the situation when some nodes receive a 

block but others do not. The nodes may include fraudsters that try to carry out malicious actions to 

implement a double-spending attack. In this example, we also abstract how the block creator is 

selected. 

An example of the actions of the agent of the type of NODE on the given level of abstraction: 

selectValidator = Exist(i : NODE) (agentNODEID(i) == timeSlot) -> 
Validator = i, 

 
createBlock = 1 ->(BlockNumber = BlockNumber + 1; Validator.blockCreated 

= BlockNumber), 
 
createRef = Exist (j : int) (Validator.maxLength == 

Validator.forkLength(j) && 0 < j <= Validator.FORKS) -> Validator. 
forkLength(j) = Validator. forkLength(j) + 1; 

Validator.ref(j, forkLength(j) + 1) = Validator.block(j, forkLength(j)); 
Validatot.refCreated = Validator.block(j, forkLength(j); 
Validator.block(j, forkLength(j) + 1) = Validator.blockCreated, 
 
insertBlocks = Forall (i : NODE, j : int, k:int) (i != Validator && 0 < 

j <= i.FORKS && 1 <= k <=forkLength(j) && i.block(j,k) == i.refCreated)  -
> i.block(j, forkLength(j) + 1) = blockCreated;  

i. forkLength(j) = i. forkLength(j) + 1; 
i.ref(j, forkLength(j) + 1) = i.refCreated, 
 
These are the possible actions of the agent NODE when it implements a fairy game and performs 

actions that correspond to the rules of consensus. The actions are given in the format 

<precondition> -> <postcondition>. We use quantifiers in the formalization process, 

especially for the action selectValidator, which defines the agent for the number to which it 

corresponds in the time slot as a validator and a block creator abstracting from the rules of selection. 

The other three actions define the blockchain’s changing of all other agents that are in a network. The 

postcondition can contain the assignment statements that transform the symbolic state of the agent to 

new by using the theory of predicate transformers [11]. By using these and other actions, we can 

create the behavior equations with prefixing, alternative choice, and sequential composition to reflect 

the actions of agents for every time slot in a cycle. 

B0 = (selectValidator. createBlock. createRef. sendBlock. 
(receiveBlocks. insertBlocks. recalcMaxLength + empty); finalization. 
NEXT_SLOT; B0), 

NEXT_SLOT = nextSlot + nextEpoch + lastSlot.Delta 
 

The finalization behavior marks the immutable blocks if the chain’s length is equal to some value. 

Having the open-source code of the node of the consensus protocol allows a fraud attack to 

perform actions that violate the rules of consensus. Formally, it can change the state in the prohibited 

time, or it can miss the mandatory actions. The problem is defining the possible actions of the frauds. 

A simple algorithm can combine possible actions in the postcondition with different preconditions 



that are prohibited in the rules of consensus. The problem of fraud actions’ completeness is open and 

in the process of being resolved. We can consider the following to be fraud actions: 

1. Not sending the block in the defined time slot by the block’s creator. 

4. Not inserting the block in the longest chain. 

It is enough to detect a double-spending attack, which is defined as follows. 

Initially, two transactions send the same number of tokens, for example, to two different stores 

without debiting them from the account. To confirm the correctness of the transaction, it is necessary 

to wait for the creation of the required number of blocks, which will finalize part of the blockchain. 

When finalized transactions are validated, the doubled cost is defined as an error. Therefore, for 

attackers, the finalization should be delayed as long as possible to allow the supplier to ship the 

goods. This can be done with forks.  

The condition of double-spending reachability can be written as the following formula: 
 

Exist (i:NODE) (i.nonFinalized – i.FORKS) > APPROVED_BLOCKS) 
 

where APPROVE_BLOCKS is a value that defines the condition of finalization or the length of 

the forks. 

To check reachability, we use our algebraic virtual machine (AVM), which implements algebraic 

modeling. It can provide, for example, backward modeling that leads from the state of the attack to 

the initial state. We can obtain the trace of symbolic modeling and then use a special program to 

obtain the concrete trace that presents a possible attack scenario. The example of a possible attack for 

five participants, of which three are frauds, is presented in Figure 5. 

 

 
Figure 5: Snapshot from AVM with demonstration of attack on blockchain visualizer 

 

In this scenario, agents hold a finalization continuing the shortest forks, which will allow the 

product to be shipped before any of the transactions is rejected as erroneous. 

This is ongoing research, and the authors tried to use this approach to study different kinds of 

consensus algorithms to analyze the resistance to different attacks. The patterns or formulas of attacks 

were created for double-spending, a sybil attack, data falsification, selfish mining, and others.  

The model can be augmented by formalization of the block selection procedure. For a Proof-of-

Stake or Delegated Proof-of-Stake consensus algorithm, it is especially possible to analyze other 

properties. One current research involves analysis of the decentralization rate, which can be defined 

by the formula of reachability of the undesirable distribution of power share. All these research 

approaches were implemented as models in the scope of AVM.  



7. Current Status and Future Development 

The AVM project started in 2018, and a plethora of formal methods were implemented that 

resolve the problems of verification, test generation, test execution, and cybersecurity for a number of 

specifications. Now it works with C-language programs, VHDL specifications [12], and x86 Intel 

machine instructions code [13]. 

A number of models have been developed in the scope of AVM. There are chemical interaction 

models, token economy models [14], and blockchain consensus algorithm models [15]. In the near 

future, it is anticipated that other programming languages and System Verilog specifications will 

become involved. The UML, SysML, and BPMN specifications are now under system testing for use 

in the AVM. 

Users of the AVM who want to implement their own methods can start to work with free access. 

Researchers of vulnerability or other formalized patterns can top up the databases. In the future, the 

AVM will be deployed in blockchain where users and creators of methods can manipulate with tokens 

that are given for benefits, money, and reputations.  

8. References 

[1] B. Silver, BPMN method and style, 2nd ed., Cody–Cassidy Press, Altadena, CA, 2011. 

[2] E. Burger, Flexible views for view-based model-driven development, in: Proceedings of the 

18th international doctoral symposium on Components and architecture, Association for 

Computing Machinery, New York, NY, United States, 2013, pp. 25–30.  

doi:10.1145/2465498.2465501. 

[3] G. Booch, J. Rumbaugh, I. Jacobson, Unified modeling language user guide, 2nd ed., 

Addison-Wesley, Boston, 2005. 

[4] User requirements notation (URN) – Language definition. ITU-T Recommendation, Z.151, 

2008, URL: https://www.itu.int/rec/T-REC-Z.151-201810-I/en. 

[5] D. Coelho, The VHDL handbook, Springer Science & Business Media, New York, 1989. doi: 

10.1007/978-1-4613-1633-6. 

[6] D. Gilbert, A. Letichevsky, A model for interaction of agents and environments, in: D. Bert, 

C. Choppy (Eds.), Recent trends in algebraic development techniques, volume 1827 of 

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 1999, pp. 311-328. doi: 

10.1007/978-3-540-44616-3_18. 

[7] J. Kapitonova, A. Letichevsky, Algebraic Programming in the APS System, in: Proceedings 

of the international symposium on Symbolic and algebraic computation, ACM, New York, 

1990, pp. 68 – 75. doi: 10.1145/96877.96896. 

[8] J. Jang, H-N. Lee, Profitable Double-Spending Attacks,  Applied Sciences  10(23) (2020). 

doi: 10.3390/app10238477. 

[9] G. Losa, M. Dodds, On the Formal Verification of the Stellar Consensus Protocol, in:  2nd 

Workshop on Formal Methods for Blockchains, Dagstuhl, Germany, 2020. doi: 

10.4230/OASIcs.FMBC.2020.9. 

[10] K. Li, H. Li, H. Wang, H. An, P. Lu, P. Yi, F. Zhu,  PoV: An Efficient Voting-Based 

Consensus Algorithm for Consortium Blockchains, Front. Blockchain, 2020. 

doi:10.3389/fbloc.2020.00011. 

[11] A. Letichevsky,  O. Letychevskyi, V. Peschanenko, T. Weigert, Insertion Modeling and 

Symbolic Verification of Large Systems, in: J. Fischer, M. Scheidgen, I. Schieferdecker, 

R.Reed (Eds.), Model-Driven Engineering for Smart Cities, SDL 2015, volume 9369 of 

Lecture Notes in Computer Science, Springer, Cham, 2015, pp.3-18. doi:10.1007/978-3-319-

24912-4_1. 

[12] V. Kharchenko, O. Letychevskyi, O. Odarushchenko, V. Peschanenko, V. Volkov, 

Modeling Method for Development of Digital System Algorithms Based on Programmable 

Logic Devices, Cybernetics and System Analysis 56 (2020) 710 – 717. doi: 10.1007/s10559-

020-00289-8 



[13] O. Letychevskyi, Two-Level Algebraic Method for Detection of Vulnerabilities in Binary 

Code, in: 10th IEEE International Conference on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications (IDAACS), Metz, France, , pp. 1074-

1077, doi: 10.1109/IDAACS.2019.8924255. 

[14] O. Letychevskyi, V. Peschanenko, V. Radchenko, M. Poltoratzkyi, S. Mogylko, P. 

Kovalenko, Formal Verification of Token Economy Models, in: IEEE International 

Conference on Blockchain and Cryptocurrency (ICBC) 2019, Seoul, South Korea, 2019, pp. 

201-204. doi: 10.1109/BLOC.2019.8751318. 

[15] O. Letychevskyi, V. Peschanenko, V. Radchenko, M. Orlovskyi, A. Sobol, Algebraic 

approach to verification and testing of distributed applications, in: Proceedings of the 2019 

International Electronics Communication Conference, Okinava, Japan, 2019, pp. 37-43. doi: 

10.1145/3343147.3343159. 


