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Abstract

The article contains a description of the process and results of the implementation of the k-
means algorithm in the analytical platform Loginom for the problem of clustering the regions
of Ukraine by the level of investment attractiveness in the field of tourism. The selection of
tourism clusters and their ranking is a difficult task in the field of data analysis, as there is no
single consolidated indicator of investment attractiveness. The conclusion about the affiliation
of a particular region to one of the tourist clusters is determined by a set of indicators of the
volume of tourist services for different types of economic activity in the field of tourism. The
Loginom system has powerful tools for cluster analysis using EM-Clustering, k-means, g-
means and others. The tools of statistical and visual analysis of the obtained results deserve
special attention: Table, Statistics, Chart, OLAP-Cube, Cluster Profiles. Clustering has made
it possible to identify groups of regions that are actively developing the tourism industry
(primarily Kyiv city and Odesa region) and are currently formed for tourism investors. Equally
important is the selection of problem regions that have a low level of attractiveness for
domestic and foreign tourism. It is noted that Ukraine has a huge potential for the development
of the tourism industry. The regions that, according to the results of the cluster analysis, are in
the problem group have "world-class tourist pearls". The Government of Ukraine and local
authorities should pay attention to the insufficient level of development of the tourism industry,
provide comprehensive support to the regions that are in the problem cluster, and thus increase
their level of investment attractiveness.
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1. Introduction

Tourism is one of the most important forms of international cooperation, which provides many
countries with significant budget revenues and employment growth. The formation and development
of the tourism market in Ukraine in recent years has taken place in conditions of a sharp decline in
consumption of tourist services, exacerbation of inflation with a corresponding increase in prices,
limited demand and declining real incomes. Problems related to the spread of the coronavirus,
significant restrictions on the movement of citizens within the country and the almost complete closure
of borders have further complicated the development of tourism in Ukraine. Search tools to solve these
problems require radical economic transformations and the use of innovative tools for forecasting the
development of tourism through mathematical and computer modelling to manage the activities of
tourism enterprises at the regional and national levels.
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The development of tourism is associated with the creation of a tourist product, the development of
tourist infrastructure, investment growth, formation and strengthening of the image of the territory,
several solutions for urban design, areas and forms of promotion. Each solution requires reliable
information support based on the calculation and analysis of quantitative indicators, which are based
on statistical data [1]. The authors of the article are part of the authors of the "Tourist Barometer of
Ukraine” — an innovative statistical publication, which was presented in late 2020 by the National
Tourist Organization of Ukraine. Clear and accessible tour-ism statistics become the basis for strategic
decisions by both entrepreneurs and state and local authorities, including those related to investment or
financing of tourism projects.

Despite declaring the availability of statistics in the field of tourism, the national system of tourism
statistics is characterized by some internal contradictions, which greatly complicates the further use of
data for strategic decisions [1]:

o the time lag of information flows from market needs. Thus, some of the data for 2019 were
published only at the end of 2020, and some data for 2019 remained unpublished at the time
of writing;

o lack of time series for some data groups;

o loss of a significant part of the tourist flow (domestic tourism), as well as producers of
certain services outside the relevant statistical observations.

e inconsistency of data obtained from different sources;

e obvious inaccuracy of some administrative data due to the imperfection of the relevant
procedures for obtaining them;

e the inconvenience of presenting and searching for information, which is now presented on
different platforms and in extremely inconsistent forms.

Another problem that arises after the collection of statistics is their heterogeneity. The task of
ranking the regions of Ukraine by the level of their investment attractiveness is complicated by the lack
of a clear leader or outsider among all performance indicators. The authors propose to conduct a cluster
analysis of the regions of Ukraine to identify tourism clusters of different levels based on the
consolidation of statistical indicators.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the
same group (called a cluster) are more similar (in some sense) to each other than to those in other groups
(clusters).

As a software implementation of cluster analysis of regions of Ukraine, the authors use Loginom -
an analytical platform that allows you to perform all stages of business analysis in a single environment:
from data consolidation and model building to visualization and integration into the business process.
The main advantage of the Loginom analytical platform is that it has a free version, is a low-code system
and is available to almost all users of any skill level. All steps in the clustering process are intuitive.
The visual designer allows adjusting all processes of the analysis: integration, data preparation,
modelling, visualization.

2. Literature and hypothesis development

The field of tourism is the subject of research by a large number of specialists in various fields.
Recently, much attention has been paid to modern information tools for the development of tourist
destinations, for example, such as Internet marketing [2]. The authors of the article have considerable
experience in the study of tourism [3-6], in particular, in the application of mathematical and computer
modelling methods for research.

Clustering, which is the main methodological tool of this research, is one of the most well-known
methods of Data Science. General issues of clustering are fully covered in the sources [7, 8]. Also in
scientific works, it is possible to meet a sufficient number of specific methods of cluster analysis. Thus,
Iyigun C., Tiirkes M., Batmaz ., Yozgatligil C., Purut¢uoglu V., Kartal E., Oztiirk M. in the article [9]
and Sablin K., Kagan E., Chernova E. in the article [10] use methods of hierarchical clustering,
Gorbatiuk K., Mantalyuk O., Proskurovych O., Valkov O. in [11] investigate fuzzy clustering methods.
The advantages and disadvantages of cluster analysis are well noted Mazur, V. Barmuta, K. Demin, S.
Tikhomirov, E. and Bykovskiy, M. [12]. Interesting is the article by Jakobsen S. E., Njos R., [13],



which examines the negative role of cluster projects, which are often supported by certain regional
industries and sectors.

Cluster analysis is often used in scientific works to study the differentiation of socio-economic
development of regions, both domestic and foreign authors. In particular, Sablin K., Kagan E.,
Chernova E. in [10] study the clustering of regions of Russia, Opmane I. [17] conducts a cluster analysis
of the regions of Latvia. Works [15,16,18-21] are devoted to different directions of cluster construction
among the regions of Ukraine. The formation of tourist clusters is carefully studied in the monograph
of A. Mazaraki [22] and the article by Mudrak R., Moiseeva N. [23].

Different software systems and programming languages are used for software implementation of
clustering processes: R [10], Deductor [14], SPSS [15], Statistica [16].

The Loginom system [24, 25], which recently appeared on the market of analytical platforms, also
has powerful tools for various types of clustering and effective means of visualizing the results of cluster
analysis.

3. Research methodology

The fundamental principles of the research are the application of a systematic approach, analysis
and synthesis of information and the reasonable use of information technology to obtain scientific
research results.

In particular, the following scientific methods are used in research:

o method of system analysis - to determine the most important and influential indicators of
tourism in the regions;

e k-means algorithm — for the formation of tourist clusters based on consolidated information
on the volume of tourist services provided by different regions of Ukraine;

o graphical method — to create diagrams of the distribution of average values of services by
clusters and to build a map of the regions of Ukraine based on the results of cluster analysis;

o method of quantitative analysis — to study the structure of Cluster profiles, the importance
of clusters and determine statistical characteristics for different types of travel services.

The information basis of the study is the statistical data on the volume of tourist services provided
in the regions of Ukraine, collected by the authors of the article during the formation of the Tourist
Barometer of Ukraine.

This study aims to conduct a cluster analysis of the regions of Ukraine to identify regions with a
favourable investment climate in tourism, as well as problem regions that need further tourism
development and support at the state and local levels.

Clustering is an effective method of dividing objects into groups according to similar characteristics
and separating them from other groups that have different characteristics. To carry out cluster analysis,
Loginom is used. It is an analytical platform that provides in-depth analytics and allows you to make
management decisions based on accurate and reliable information. The platform has a user interface
that does not require special training. Loginom has support for analysis technologies: from simple logic
to machine learning.

The obtained results of clustering will contribute to the further study of the development of tourism
in Ukraine to increase its investment attractiveness.

4. Results
4.1. Choosing a clustering method

According to the aim of the research, it is necessary to divide the regions of Ukraine into functional
groups according to the observed volume of tourist services and to identify hidden patterns. As
mentioned in the Introduction, obtaining initial data for clustering is a separate challenge. The authors
of the article selected for analysis 13 influential indicators that are the most important in the total volume
of tourist services in the region. The indicators are selected in such a way as to comprehensively and
objectively represent the provided tourism services and minimize the problems with data in the field of
tourism, which the authors mentioned in the introduction to the article. This approach will make it



possible to effectively carry out the process of clustering the regions of Ukraine. The initial data are
formed by the authors based on [1, 26-28].
The Loginom analytical platform allows clustering using one of three methods:
o EM-Clustering;
e k-means Clustering;
e g-means Clustering.
The authors created a model in the Loginom system and solved the problem of clustering using all
three methods (Fig. 1)
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Figure 1: Model of the clustering problem in the Loginom system

Consider briefly the features of the three methods available for clustering based on the Loginom
platform.

EM (Expectation-maximization) — a popular clustering algorithm that allows you to work efficiently
with large amounts of data. EM-clustering is based on the EM-algorithm, which is based on the
assumption that the studied data set can be modelled using a linear combination of multidimensional
normal distributions. The aim is to estimate the distribution parameters that maximize the logarithmic
likelihood function, which is used as a measure of model quality. In other words, it is assumed that the
data in each cluster is subject to a certain distribution law, namely, the normal distribution.

Thus, any observation (object) belongs to all clusters, but with different probabilities. The object
should be assigned to the cluster for which this probability is higher.

The field of application of the EM-algorithm is extremely wide: discriminant analysis, clustering,
restoration of gaps in data, etc. The EM algorithm is based on the assumption that the clustered data
obey a linear combination (mixture) of normal (Gaussian) distributions. The name of the algorithm
comes from the words «expectation-maximization». Its purpose is to determine and estimate the
distribution parameters - mean and variance, which maximizes the likelihood function used as a
measure of the model's quality.

Among the advantages of the EM algorithm are the following:

o effective processing of Big Data;
e resistance to noise and data gaps;
o ability to build the desired number of clusters;
o fast convergence with successful initialization.

The problem of clustering Ukrainian regions according to 13 main parameters can hardly be
attributed to Big Data. Thus, our attention will be focused on two other methods, for which the handler
performs clustering of objects based on the k-means and g-means algorithms. The main difference
between one algorithm and another is whether the number of clusters is known in advance. If the number
of clusters is known, then the k-means algorithm is used, otherwise — g-means, which determines this
number automatically within a specified interval.



From a formal point of view, all means methods use a single algorithm, which differs in some
computational parameters. There are clustering methods that can be viewed as derived from k-means.
For example, the k-medians method uses the median rather than the mean to calculate the centroids,
which makes the algorithm more robust against anomalous values in the data.

The g-means algorithm builds clusters in which the data distribution tends to the normal (Gaussian)
and removes the uncertainty in the choice of the initial clusters. The C-means algorithm uses elements
of fuzzy logic, taking into account when calculating centroids, not only distances but also the degree of
belonging of observation to a set of objects in a cluster. There is also known Lloyd's algorithm, which
uses not a set of vectors, but a region of a vector space as an initial partition. The idea of the k-means
method was simultaneously formulated by Hugo Steinghaus and Stuart Lloyd in 1957. The term «k-
means» was first introduced by J. McQueen in 1967.

Thus, for the clustering of regions, we will use the basic algorithm k-means.

4.2. Implementation of the clustering process in the Loginom system

In the first module, we download the data shown in Fig. 1 from the Excel file (Fig. 2). For quick
registration when replacing the full names of travel services, we leave only the appropriate classification
codes.

In the second stage, we will configure the fields (Fig. 3), specifying the types and kinds of data that
will be used in the future for clustering.

The second module — Field Features is used to configure additional field parameters, specify input
and output parameters of the model for loading them into clustering nodes.

The third module is a direct clustering processor for one of the certain types. In this article, we will
consider the application of the k-means algorithm to divide many regions of Ukraine into three and five
clusters. The division into three clusters corresponds to the usual system of evaluation, which can be
divided into clusters with "high", "medium" and "low" levels of investment attractiveness in the field
of tourism. The division of the initial data set into 5 clusters is given to further detail the groups of
regions and study the stability of the clustering process. In other words, you need to find out how the
clusters will behave as their numbers increase.

Setting the parameters of the third module requires the choice of the method of data normalization,
as which we choose the standardized values of the volume of tourist services (Fig. 4).

In the next step of configuring the Clustering processor, it is proposed to set a certain number of
clusters or choose the method of auto-detection of such a number. According to the problem statement,
we build two separate modules for the implementation of the k-means algorithm. First, select the
division into 3 clusters (Fig. 5), and in another module at the same step, select 5 clusters.

The last step for the Clustering processor is to configure the visualizers (Fig. 6), which will be
discussed in detail and analyzed below.

In the future, to interpret the results of clustering, we will consider in parallel the visualizers of both
modules (for three and five clusters), presented in the model in Fig.1. Clustering by the k-means method
gave the following quantitative results - cluster weights. When 25 regions were divided into three
clusters, cluster 0" included 18 regions, cluster "1" has a single representative, cluster "3" contains 6
regions (Fig. 7).

When divided into five clusters, cluster "0" includes 3 regions, cluster "1" contains 18 regions,
cluster 4" - two and clusters "2" and "3" have one representative (Fig. 8).

The Table visualizer in the Clustering visualization subsystem (fig. 6) gives a qualitative clustering
composition. For the case of three clusters, we have the results presented in Fig. 9.

According to the results of clustering, Kyiv city forms a separate cluster, six regions of Ukraine
(Dnipropetrovsk, Ivano-Frankivsk, Kyiv, Lviv, Odesa and Kharkiv regions) form cluster 2", the rest
of the regions belong to cluster "1".

For the case of five clusters, we have the results presented in Fig. 10.

According to the results of this clustering, Kyiv city and Odesa region form separate clusters
according to the numbers "2" and "3". The next two clusters are also small: cluster "4" - Dnipropetrovsk
and Kyiv regions, cluster "0" - Ivano-Frankivsk, Lviv and Kharkiv regions. The largest cluster "1" with
a capacity of 18 is formed by other regions of Ukraine.
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Figure 10: Clustering results for problem 5 clusters

Table 1 presents the average values of tourist services for each of the three clusters in terms of
economic activities.

Table 1

Average values of tourist services by 3 clusters

49.32 55.10 55.20 56.10 56.29 56.30 68.20 77.11 7721 79.11 79.90 93.21 93.29
0| 27,63 132,24 55,13 451,06 104,43 44,06 1500,48 30,14 2,38 52,09 8,45 9,76 31,49
1| 33451 | 578386 | 10575 | 1785982 | 263460 | 54038 | 5415896 | 270308 | 46,87 | 149828 | 50984 | 21016 | 87520
l 53,45 847,21 160,55 1807,13 623,95 154,42 8074,33 138,05 24,90 214,06 72,26 47,61 140,42

Source: formed by the authors.

For greater clarity, we present a comparative analysis in the form of diagrams of the distribution of
average values of services in thousands of UAH by clusters (Fig. 11)
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Figure 11: Diagrams of distribution of average values of volumes of services on three clusters
Analysis of diagrams in Fig. 11 shows the advantage of the first cluster (Kyiv - green) in the absolute



majority of indicators of the volume of tourist services. The only exception is the indicator with the
code 55.20 "Accommodation activities for the period of vacation and other temporary residences", for
which cluster "2" has an advantage.

Loginom allows you to quantify the degree of importance of clusters for each type of service
provided (Fig. 12) and present the contribution of each cluster in the total volume of provided tourist
services of a particular type (Fig. 13). In the Cluster profiles visualizer, you can see the general structure
of the formed clusters. It reflects all the considered indicators together with the nature of their impact
on the composition of the cluster. The main factor determining the composition of the cluster is the
importance of the properties, expressed as a percentage. The total importance of the considered field is
determined by the variability of its considered parameters. The importance of continuous and discrete
fields is defined differently. For continuous fields, it is set depending on the deviation of the average
value of this group of clusters from the total average of the entire sample. The more pronounced this
deviation, the greater its significance. The importance of discrete fields is determined by the presence
of individual differences between the groups.
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Figure 12: Visualizer Cluster profiles

Table 2 presents the average values of tourist services for each of the clusters in terms of economic
activities in the division of the regions of Ukraine into 5 clusters.

Table 2
Average values of tourist services by 5 clusters
49.32 55.10 55.20 56.10 56.29 56.30 68.20 77.11 77.21 79.11 79.90 93.21 93.29
0 47,26 985,74 61,65 1776,97 216,87 152,14 5724,66 56,11 35,05 219,19 81,18 55,35 104,80
1 27,63 132,24 55,13 451,06 104,43 44,06 1500,48 30,14 2,38 52,09 8,45 9,76 31,49
2| 33451 5783,86 105,75 17859,82 2634,60 540,38 54158,96 2703,08 46,87 1498,28 509,84 210,16 875,20
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Figure 13: The contribution of each of the three clusters to the total volume of tourist services
provided

Diagrams of distribution of average values of volumes of services in thousand UAH for five clusters
are presented in Fig. 14.
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Figure 14: Diagrams of distribution of average values of volumes of services on five clusters

The distribution shown in these diagrams is structurally similar to the case of the three clusters. The
Kyiv cluster wins in all services, except 55.22, where the leadership belongs to the blue cluster of Odesa.
By the way, Odessa was part of the winning cluster 2" on this indicator and in the previous version of
clustering. This similarity indicates the stability of clusters in detail. However, we also have differences.
For example, for the service 56.29 "Supply of other ready meals™ the cluster 4" (Dnipropetrovsk and



Kyiv regions) was in the second position, and for the service with code 77.21 "Rental of goods for
sports and recreation™ - the cluster "0" (lvano- Frankivsk, Lviv and Kharkiv regions), not significantly
inferior to Kyiv.

In fig. 15 you can see the distribution of the five clusters by importance. Loginom allows, in addition
to numerical values, to display the degree of importance of colour intensity.
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Figure 15: Cluster profiles visualizer for the case of 5 clusters
In fig. 16 shows diagrams of the distribution of the contribution of clusters in terms of different types
of tourist services.
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Figure 16: The contribution of each of the five clusters to the total amount of tourist services provided
Fig. 17 and 18 show the «Cube» visualizer, which is one of the common methods of complex
multidimensional analysis of OLAP (OnLine Analytical Processing). It is based on the representation

20, 56,10, 56,29, 5630,

2,




of data in the form of multidimensional cubes (OLAP-cubes). A cube is a convenient tool for visualizing
multidimensional data and obtaining the necessary report forms. It contains measurements and facts
that are determined during construction. The main feature of the cube is that its structure is not rigidly
defined. By manipulating the measurement headers, the user can achieve the most informative
representation of the cube.
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Figure 18: OLAP-cube visualizer for the case of five clusters

In the problem of clustering of regions of Ukraine OLAP-cube allows in a convenient and compact
form to present the results of clustering and the corresponding average values of services by each type
and each cluster.

For a more in-depth analysis of the results of clustering use the visualizer «Statistics». For each
considered property in the cluster is calculated: confidence interval, mean, standard deviation and
standard error. For the problem with three clusters, the statistical characteristics of clustering are
presented in Fig. 19.
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Figure 19: Statistics visualizer for a problem with three clusters

The Statistics visualizer is designed to view different statistics for each field in a data set and is a
table in which the names of the fields in the data set are arranged in rows and the names of the statistical
indicators are arranged in columns. At the intersection, in the cells of the table, are the values of



statistical indicators of the respective fields. The "Statistics" visualizer for the clustering problem in the
form of five clusters is shown in Fig. 20.
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Figure 20: Statistics visualizer for a problem with five clusters

In addition to statistical characteristics and histograms, which are analogues of the diagrams shown
in Fig. 11 and 14, note the scale diagrams - Box plot, which is an excellent graphical tool for a compact
presentation of information on the distribution values within a single indicator of the volume of tourist
services provided.

4.3. Interpretation of clustering results

Data clustering allows you to solve such important problems of Data Science:

Data study. Dividing a set of objects into similar groups helps to identify the structure of
data, increase the clarity of their representation, put forward new hypotheses, understand
how informative the properties of objects are.

Facilitate analysis. With the help of clustering, you can simplify further data processing and
model construction: each cluster is processed individually and the model is created for each
cluster separately.

Data compression. When the data is large (hundreds of thousands and millions of rows),
clustering reduces the amount of data stored, leaving one most typical representative from
each cluster.

Forecasting. Clusters are used not only to briefly describe existing objects but also to
identify new ones. Each new object belongs to the cluster to which the join best satisfies the
clustering quality criterion.

Detection of anomalies. Clustering is used to select atypical objects that do not join any of
the clusters

Thus, fig. 21 presents a map of Ukraine with the results of clustering of the first type.
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Figure 21: Results of clustering of regions of Ukraine mto 3 clusters

The solution to the problem of clustering the regions of Ukraine into three clusters according to
the level of investment attractiveness predictably separated the capital of Ukraine into a separate cluster.
Kyiv city is not only the largest city in the country but also a major tourist centre. Cluster number 2
includes Dnipropetrovsk, lvano-Frankivsk, Kyiv, Lviv, Odesa and Kharkiv regions. This cluster ranks
second in the ranking. It includes four regions corresponding to the largest cities of Ukraine, as well as
Prykarpattia, which is one of the prominent tourist centres of the country (the highest peak in Ukraine
- Hoverla, the world-famous resort "Bukovel”, etc.).

Fig. 22 presents a map of Ukraine with the results of clustering for a problem of five clusters.
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Flgure 22 Results of clustering of regions of Ukraine |nto 5 clusters
Kyiv city is again in a separate cluster, which indicates a stable position as the leader of the tourism

industry of Ukraine. Also, a separate cluster is the Odesa region, which after the annexation of Crimea
has become an undisputed favourite of maritime tourism for Ukrainians. The increase in the number of



clusters has not changed the general trend towards the allocation of levels of investment attractiveness
of regions in the field of tourism services. The allocation of Odesa region, lvano-Frankivsk, Lviv and
Kharkiv regions, Dnipropetrovsk and Kyiv regions into separate clusters are the result of high
performance, which demonstrates these regions for certain types of tourist services, which can be seen
in the diagrams of Figs. 14.

The rest of the regions are inferior to the level of the considered clusters and to attract investors in
the field of tourism in the future should work on the full disclosure of their tourism potential.

5. Conclusion

The authors of the article based on the implementation of the k-means algorithm in the analytical
platform Loginom obtained the results of clustering the regions of Ukraine by the level of investment
attractiveness in the field of tourism.

Loginom system has powerful tools for cluster analysis by EM-Clustering, k-means, g-means and
others, statistical and visual analysis of the results. Clustering has made it possible to identify groups
of regions that are actively developing the tourism industry and are currently formed for tourism
investors. Equally important is the selection of problem regions that have a low level of attractiveness
for domestic and foreign tourism.

Ukraine has a big potential for the development of the tourism industry. The regions that, according
to the results of the cluster analysis, found themselves in the problem group have world-class "tourist
pearls”. Ostrog, Baturyn, Velyki Sorochyntsi, Khotyn, Kamyanets-Podilsky, Khust, Chersonesos,
Khortytsia - this list of sights can be extended and supplemented.

The Government of Ukraine and local authorities should pay attention to the insufficient level of
development of the tourism industry, provide comprehensive support to regions that are in a problem
cluster, and thus increase the level of their investment attractiveness.
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